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NTRODUCTION

This report summarises the research carried out during the period

1 December 1980 to 30 November 1984 on Grant AFOSR-81-0003 entitled

'High Angular Resolution Stellar Interferometry'. The AFOSR program

manager was H Radoski and the Principal Investigator was J C Dainty.

The research was carried out at The Institute of Optics, The University

of Rochester, Rochester NY 14627.
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3.

1. SUMMARY OF ACCOMPLISHMENTS

Copies of the 20 papers are provided in the Appendix. In this

report we therefore give only a brief outline of the important results

that were obtained in each of the topics investigated.

1.1 Atmosoheric Turbulence (Refs 3 and 4)

What exposure time At should be used in stellar speckle

interferometry? The question of the optimum time (for maximum

signal-to-noise ratio) when in thephoton-limited regime was

investigated by O'Donnell and Dainty [J Opt Soc Am, L0, 1354 (1980)],

who showed that a good rule of thumb is At ~ 2-r, where -c is the lie

coherence time of the stellar image. Measurements of the temporal and

spatio-temporal correlation were made at Mauna Kea, Hawaii over 10

nights in June/July 1980 [3], showing an average correlation time of 15

ms which implies a speckle exposure time of 30 ms.

Measurements were also made of the wavelength dependence of the

variance of stellar scintillation [4] which was shown to follow

Tatarski's prediction of a 2 i/<I>2 . )-7/6.

In unpublished work, J Dugan [Ms Thesis] constructed an anamorphic

shearing interferometer for measuring the long-exposure MTF of the

atmosphere. This was a prototype instrument which demonstrated the

feasibility of constructing a portable interferometer for site

testing. Even today, astronomers use the naive 'star trail' method for

site testing which is almost totally irrelevant fori characterising

ssites for large optical telescopes.
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1.2 Space-Time Structure of Images (Refs 2. 3 and 6)

If one observes the speckle pattern image of an unresolved

star, the time evolution would be qualitatively described as a

'boiling' of the image. The spatia structure of a speckle pattern at

a given instant of time is quantitatively described by the spatial

correlation function CI(AX). The tempora structure at a given

space-point is described by the temporal correlation C2 (At). The

scatio-temoora structure is described by space-time correlation

function C3 (AX,At) and we measured this function for stellar speckle

images [Dainty et al, J Opt Soc Am, 71, 490-492 (1981) and ref 3].

If the space-time correlation is separable,

C3 (Ax,At) = C1 (Ax) C2 (At),

then the spatial structure and time evolution are uncorrelated and

under these conditions one would describe the overall time evolution as

'boiling'. We showed experimentally [3] and theoretically [21, that

C3 (AXAt) is not normally separable in stellar speckle images and

therefore there " a coupling between the spatial and temporal

structure of the image. This is due physically to the directionality

of the turbulence in the telescope pupil due to wind.

It should be possible to make use of the space-time coupling of the

imaga intensity to increase the performance of systems that attempt to

image through turbulence. For example, at the moment, speckle

interferometry uses data from consecutive frames independently and

fails to make use of the fact that photons arrivirg at the end of one
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fre are correlated with those arriving at the start of the following

one.

Reference 6 points out the bias obtained on the shape of the normalised

spatial correlation function of dynamic speckle under the influence of

time integration. The oounter-intuitive result is that the speckle

size i e slightly with increasing time integration.

0
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1.3 Speckled Speckle (Refs 5 and 14)

'Speckled speckle' arises when a speckle pattern is scattered

by a finite rough surface or propagates through a random medium of

finite extent. An example is light that has propagated through the

atmosphere (i.e. a speckle pattern) and is scattered by an object with

a rough surface.

O'Donnell [5] showed that the probability density function of speckled

speckle is a K-distribution of order equal to the number of speckles

illuminating the second scatterer. In the limiting case of the second

scattering area being small compared to the illuminating speckle size.

the variance of the intensity equals three times the mean value,

whereas for ordinary speckle the variance equals the mean. Newman [14]

experimentally confirmed this.
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1.4 Detection of Gratings Behind Diffusers (Refs 8 and 10)

This has no direct relevance to stellar imaging but was a

spin-off resulting from asking the question: what phase objects can be

'seen' behind strong phase diffusers?

Let the correlation length of the wave that has passed through a phase

diffuser be L and the period of a phase grating be b. Then if

L/b <.35, it is impossible to detect the presence of the grating behind

the diffuser from simple observation of the intensity in the near- or

far-field.

However, the presence (and period) of the grating can be detected by

making correlation measurements, either temporal or spatio-temporal

depending upon the circumstances. This was first suggested by Baltes

et al and experimentally demonstrated in Refs 8 and 10. This has

particular application to secure coding of information which can only

be detected by special correlation techniques.

,

II
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1.5 The Phase Problem (Refs 1,7,12,17,19,20 and 21)

1.5.1 Cross-soectrum Method

Given the power spectrum, <F(u) F*(u)>, and the

cross-spectrum, <F(u) F*(u + A)> where A is a small frequen cy

increment, Knox and Thompson showed that it is possible to recover the

object function f(x) uniquely. This is done by finding hase

differences in the frequency domain and bootstrapping the phase from

the origin outwards. The cross-spectrum method is of course important

in astronomy because <F(u) F(u + A)> can be measured using speckle

data.

In Ref 1, we showed that it is possible to recover the object function

by a zero location technique. The main significance of this result, as

Brames discussed in his thesis, is that it proved the unigueness of the

cross-spectrum method. Computationally it would be more

straightforward to use the original Knox-Thompson bootstrapping method.

1.5.2 Uniqueness of Modulus-Only Data

(a) Eisenstein's Criterion

In one dimension it is well-known that f(x) cannot be

recovered uniquely from IF(u)1
2
, at least in general. In two

dimensions, the number of possible object functions is greatly reduced,

and it is frequently stated that f(x,y) is recoverable uniquely from

IF(u.v) 12, 'almost always'. Suppose, however, that we wish to

xuarantee that there is a unique solution. For what class of objects
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f(x,y) is uniqueness guaranteed?

The uniqueness of the solution is dependent on the factorisability, or

reducability, of the z-transform of the object:

F(zl,z 2 ) = fij zJi z 2 J

where z1 and z2 are complex spatial frequencies and fij represents

sampled values of the object. If the polynomial F(zl,z 2 ) is

non-factorisable (or irreducible), then there is a unique solution to

the phase problem (i.e. given 1F1 2 , there is a unique f).

Irreducibility of F is guaranteed for certain objects f whose support

satisfies Eisenstein's criterion [7,17]. This criterion requires that

the object has non-zero points in two particular locations. One of

these points is similar to, but not the same as, the reference point in

holography. Details are given in Ref 7.

In his thesis and [21], Brames greatly extends the class of irreducible

objects. The following is an approximate rule-of-thumb. Enclose the

object support by the closest-fitting polygon: if the polygon does not

have any two sides parallel, any object with that support has a unique

solution to the phase problem.

Testina for Unioueness

Given either the object or autocorrelation values it is possible to

test for factorisability, and hence uniqueness. using a simple

algebraic procedure [12j. This procedure uses the following fact: if
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the polynomial whose coefficients are reduced modulo p, where p is any

prime, is irreducible, then the original polynomial is irreducible. It

is much easier to deal with polynomials whose coefficients are reduced

modulo p is p is small, e.g. p = 2.

1.5.3 Recovering Solutions from Modulus-Only Data

Extending the above ideas, we see that solving the phase

p:'oblem is 'simply' a matter of factorising polynomials in two complex

variables. For discrete, noiseless data this is a straightforward task

(19]. Unfortunately, the technique described in [19] cannot easily be

extended to cases of real interest (e.g. noisy data) and the Fienup

algorithm is probably still the best technique currently available.

Non-linear least squares optimisation only proved useful up to 5 x 5

objects [20].
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1.6 Infra-red Speckle Interferometry (Ref 16)

An extensive observational program of infra-red specile

interfercetry was carried during the period of this grant in

collaboration with Prof J L Pipher (Rochester) and Dr S T Ridgeway

(Kitt Peak). The bipolar nebular HD44179o the Red Rectangle, was

spatially resolved for the first time [16] and observations on 0H26.5,

NL Cyg and IRC+10420 are also being prepared for publication.

is A -
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1.7 Phase Coniumatio' (Refs 13,15 and 18)

Whilst this subject is not connected with stellar speckle

interferometry, it is highly relevant to imaging through turbulent

media because of the possibility of the correction for random

distortion. Nieto-Vesperinas' work on this relates to Fabry-Perot

interferometers with one phase-conjugate mirror (13,15] and to the

phase conjugation of evanescent waves [18].

II
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1.8 flblioeranhe on Stellar Interferometry

During the peiod of thiis grant a bibliography on stellar

interterometry was maintained and the latest version is attached at the

end of the Appendix.

Y
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6. MUPID

This appendix oontains oopies of the 20 publioations produced

under this research contraot. They are nuabered as in the List

of Publications and presented in chronologioal order.
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1.542 j. Opt. Soc. Am.Vol 71. No. 12 December 1981 IOSA Letters

Method for determining object intensity distributions in
stellar speckle interferometry

B. 1. 3ramnes and 1. C. Dainty

The [isw4ate& Oi scs. 7.
5
ie Livrtca aio .sro %r ,st S542

R eceived I lIu v 2. 9 81 
62

Wie describe a method ior finoinqv the intensity distribution )r ini object ;r',m imearement. or aseasuremfenti.
of its ross-power spectrumn. This technique. itke the Knox -Thompson a~~thm. easesje use sithe Pn ise in!,rma-
tion contained in the cross spectrum:z it is based on a ssstematic procedure o r .0calios tnoe oimpmex zer ss reure-
senting the spectrum of an object.

1. INTRODUCTION The proposed method for solving the phase problem ii.e..

Techniques such as Michelson. intensity, and speckle inter- ietfietecretcmlxzrs sdsrbdi eto
-fermetr usually yield the power spectrum! of an object. that 3. and a computational example is gtven. As in anY technique
is. the modulus or 'the Fourier transform of some intensity of ph .ase retrieval, noise plavs a crucial role. as is iss-
distrbution. it Lis ell known that if tne phase of -he Fourie'r trated.
transform. is missing. thnr tere is. in eeneral. no unique so-
!lttton ,ir the object intensty. Constraints such as obiect
positisitv typicailly do not -emos-% the inherent am ,oieui tv: a ZEROS OF THE OBJECT TR-ANSFORM AND
althouga it appears tnaz in zwo spatial dimensions the degree PWRSETU
of arnbiguitY is !es tnan in one.4 kThe analysis presented We shall rastrict our discussion to objects whuie intensity
in this Letter will b'e restricted to the one-dimensional distribution oix) is a functon of only one vaia;ble. thus in.
case.) ciuding separable :wo-iensional 2i:itub0 fthe form

Additional Liformation about zhe object is usuatly available ox 1, x-, jx 1 1x t Any such ',',.at ,ne en-
in, high-resolutin stellar interferometr-. In this Letter swe counters is square integr~bie -- , exists eniy within a tnt
se the furt .her inf .ormation provided by the cross-powsr reion. As a consequen'ce, itz Fcurier trarst-srmr.0 ) can be

spectruim.: In 1974 Knox and~rhompsonS 'pointed out that, extenided into the complex p areas an entire: ;incrion i z
in sptse irterferomemrv essentially independent estimates U W c It is well known' that 0,: an1 be uni-q'te!y re~ires~rtecl
of th- . ect power spectrum O Ju~ ianti its c.us--p,-%er hi :s omtniX 4e'-J . ne tc.mi ,t a Hadamard
soectr,.:n i~LzstuOu + Al could be obtained for a single small product's

iiue of A i5 !-X. where r,) is Fried's correlation parameter
t7vmosonerrc turbulence.5 

.\ is hie -savelenzath. ; is tbie fiocal 4 -

-4 thne ZeleSCune. inn,' -lt i !s znc r tunier tran :trni it

the obiect :nrenstty s)i. They 'tsed this additional ifor- whetre .A and 8 are aontr However, if a 4:.Sci Pe trapi,-
niatitin insa boot-strapping algurit*'m to compute an estimate forni is taken of the object. iniy a finite numner ii . ero'. :e-
of the phase of the Fourier transform: the mean square error termined by the samplin.: inte.-vali,. represettobiect iritor
ofthlis estimate increases lineariv with spatial frequency. mnston. It is somewhnat more convenient to examtine -et
This procedure has also been successfully imliemented by zeros in the cssmpiex a plane. defiiied by-'
Nisenson e, ai. .I whereas other algorithms tnat combine the
.nfornatznn contained in the power spectrum with one or more a C'ep2:i

esti mates of the cross-p' ower spectram have been inveftigated W- 'hall detine the 4uppo rt oi -.x I !., ne -'t and samp;c at
nyShrman~ rot r al..- and Aitken and DeSaulniers. ' Ist: oh tht=2 \Then. a en q is ap

Wecoisider yet another way of using the information in !he plied, the Fo,;r:erte5Cal. Fo -i. e-itly :a- :romn
-riss-noer spectrum, basedi )n the properties of its complex tact r 4' 1i a-m- 'at -" ~

he mprane-f the zeros at entire tunc:tsnas :n inter.2

feroinerry bas been discussed by Ratesus and was recently
emphaszed by Ross er at. !?--In Section 2 we sumnmarize= .- , i-lt

sme eiementary properties of complex, polynomials that
represent the Fourier transform and power spectrum it an-

iri.In this se-ion we ssurtte that theo" oect can he id. -

- iaevrenreser:" Io n- et . t 4eets tortct.or , Sb ti av

3!v r 7:
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OIX)
bi

(a). b.

c7.

(C) . .d)

F .5, . .t A.5,. t

. I,,, .. / -

S.\. * w =

oreach zero pair. di The zerosif'er~ pc.m, i ihA=13 The divlsions' -t he unit zurce are in incremenis ot A1. Thecorrect
-it'nx 'ancrtanr- trw, tot, in 'iii. whereas those ;Prstie the init crrrie are b'tt'citec'cas y AI 5

-c-onstant factor C7. :he zeros of *he polynomial completely Ps I~ i

oec tt )-a ana hence - • .x °.

If 'icct takes on the part:tiiariv simple fornm of a constant it it )IU- I; 5
within the interval 2:. the zeros o f 0¢ iwill all lie on the unit , . a 

r
U - p

c:rcle ;u = : at base angles it = Zr.Vn= i-I. t2 ........ The ano'uar distribtion ofthe zeros of 'PiuPis identical with
=.N '21. %lore-c omplexuhjiects are represented by displacig that of i 'i [Fig. licij. However, without some basis for
zeroi }rom thee base positions. each x, affecting a hiher hosiniz between [iu and JIu'I we could construct _IN 2
spahial frequency as In I increases.

6 
There are only'de- , i , uaiiy plausible sets of N zeros each of which represents a

grees i tree .m. nowever. since the real and positiv he,,nt real. pioss' ly positive object.
,raints ian 1xi. respectively, force the zeros to occur in
:npiex conjeogate pairs in the range,) < ,[ :S -.. Fi-.re libi

ifwhs the zeros asociated -ith a negati e exponental object. 3 RECOVERING THE PHASE INFORMATION

,,x"icn l-, assian -andomn noise 'was added 1,see Fg. lad.
Thiis part:. jar in~ex: -vas choisen because all XI of :he zeros Let is examine tne wav the phase iniirmation present in the

1re iuiide the umit rc. near their base angles. This makes -IiT.4power snectrumin +- u - iros - A is enc ided by

m ?e pigures that bw aomewhat clearer butis not typica 'if ha. En eninii b-s, A into rioe csmpex a plane oy

zero distrihut one bsicn generally also have zeros within the s Eqs. etind yeAds

i "circle . ,bec A

In arimi rnmnner see tin reresent the power spectrum +"'k. A =I U. ii, .

anos a sn anaivc incthon eP:on=ni0 e .r On applying
in Jue the u e that Iet :oiin gate utit' 'ae , - ser n . - . " e d

, . :he fgures ht :', {io somewha 'ieer t ;s nttpcif :. :rs xeti l, !t iecmlx:.pae

f .r ittu~nw~ngnrlyas aezrsv-ti h m q.,:)ad ) ed
b.m tcri.'' .- = w,)i e p 2 : =3
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In practice it is often the c,.se that the p,..er spectrum can
b- neasured more accurately than the cross spectrum. By

(a) us.in a procedure similar to that suggested by Bates and

S"Napier.
:
9 it ;s possible to make use of the more accurate data.

We first determine an approximately correct set of zeros w, A
from the cross spectrum and then associate them with the
more accurate ,but ambiguousi zeros of the power spectrum
to obtain zhe new set. The extent to which this will prove
successful depends heavily on the noise characteristics of the
two measurements. as we can see in Figs. 3-5. Figure :3aia
shows the zeros of a n.isy cross spectrum 1.. = -[Si. from
which we can find the correct zeros and reconstruct the neg-
ative exponential object with 2.5%, noise. Figure 4 compares
the same zeros x- with those of the less noisy poer spectrum
,+- in Fig. Iicc In this case we see that all the correct zeros
of :he power spectruin can be identified. but using an even
noisier set uf zeros in Fig. .5 gives ambiguous. and even incor-
rect. resuits in several cases.

b4. DISCUSSION

• " - ".In stellar speckle interferonmetrv, estimates of both the power
spectrum and cross-power spectrum of the object are avail-
able. We have shown that, if the noise is low enough, a single

"_ " _"_ " _estimate of the cross-power spectrum couid be used to find

- (ai
./.-

-A. 4 ect= -. ' , o-,".3, - ,,x -, 5,, -h The / ,

.o ,e it---wriaoaf. .= Ttirrner er. ave been
' .y one period su:tat :hey aovear oent;cai .ith ,. s -]

-.., se, e : .poer ;sa -trs.n. Requir:ne .hat eac Zen, have
a -,tated .-r e nr i i ,. y to1 real soutions :or - . either those V

x.ere ' s c;)mplex constant.
-ae crrmtuiee set )f eris ii -emains unchanged h,.,ever.

"Z -_- -, russ e-en rt;tate.t tir., t a .stt 5t ; itt.c.

'= -2.-iA. -T

in most cases. knowiedge of A :s sufficient to identif'. :he two
st-e u . : .: thus. in pruncipie. the ph-ase of-), a, can be
recoered r-m a sincx calculation of I'oi. A) for-) < A < 1 26.

However. .f a suoset -of the zeros iilik 1 is invariant under a
* tatim . then there wtil be tuore than one possible chice ,if

and , . : ,onsistent with 'Iu. A, rOr A = -,
Whereas the number .,t p,-sAhe SOutions is ,troniv 'on-

aned ' v A and -.nce .' "-t .o frmidable in 'rbsta':e as
I:,: 0" uwer saectrurio. !he pr,,ciem can -e re,..',. .itn,
.2se "i," Iitts':rcitt ,hoice ,.t -A."

-n F..: .e .:ave In -inject *hat has .Il its ic-cuated zeros -_"_-_-_-_

,tide heun,! circ.at ,, = 1.'- ,ex iu., 2n - i \ano ine
• nnit ,,ain a unique phase solUtion from the crcss spectrum

in 'nteer -. aiues -f . Aithuszh the posit;ons oft he zeros
". : . are denticai ' ,'n..%-e, ithe power spectrum*.here -- ,ss.cr,,-s'etrumn AssnFir L-,-1.he

- r e:'s r ter , !Z-e. t- risio-, t ,s, teLin:,,,c - M2 rin '! ri t

......... " - ,. -

-3l
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-. dirions the results4O any mnethod 4i Itnase recunstruction "sing
the power and cross soectrum must be treatec cauttousiv.

- - Noise plays such an rnpiirtant roie in the phase problem
-- - . *'thak it would seem Useful to Study the competx zeros o tMo.

V - S chastic processes. The statistics of real-zero crossings have
E: been studied extensively, but, to our k-nowiedsze. those of the

complex zeros have not.
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Correlations of time-varying speckle near the focal plane

K. A. O'Donnell

I he institute of Optics. Universit% o' 3ocres-re.. qocrtesta.. Ni ork .46:.

P Recei% ed Jli -. t981

The properties of speckle produced near the focal piane of a lens wits- a linearly translating diffuser in theilupi are
investizated. Expressiorns for zte space-time atmplitude and lntettsst;- c zrreiations are certved in the Gaussian-
flid limsit. The inrensity correlations obtained ire not cross-Dpec-rali;v pure nut rather irnoiy some decree of
speckle translation. in directions both parallel aind antioaralli to th ie diffuser velocity. Lens arier rations are -Ouna
to have a significant effect on the intensity correiatons. and tneoreticai results are oresented for defocus and s,,rne
of the primary aberrations. Experimental i easurements with 3 rw-Oetector instrumer.t andi stnotn-correlation
equipment are found tuble in good agreement -with the theory.

INTRODUCTION plitude from a scattering center would appear to change phase
Lase sctteingfrommovng iffser hasbeeasuiec of during its transit across the pupil. This phase variation is dueLase sctteing rommovng iffuershasbee a sb 'lee of entireiy to the deterministic aberration of the lens. Thus itconsiderable interest in recent years. It is well known that isaprethttebhvirote ci-lnsekemywheapaen aha covheig behaviorl ofv the socal-plan speckl amayerlwhena cnvegin sperial ave s sattredfro a inerly provide somne insight into the phase properties of the lens

translating diffuser, there are two effects that are onserved opl
in the diffraction field. First, in diffraction planes that are If the diffuser motion is itearlv transverse to the optical axis.
distant flrom the focal plane of the wave. the effect more no. ope fet ilb e~gbe hspristeueo
ttceaole to the ey" e is a general lineartranslation of the soeckles Dompier affectd wi be nlie rtherits the use o-t'
before each speckle loses its identity. As the observing plane sinlrpresentation of the opt"ical fiald. Consider the case
approaches the fous, the linear speckle motion becomes less when t he compiex amplitude in the focal plane Akx.%, t) ia due
apparent. as each speckle decorrelates after traversing a to a large num'ber of independent scattering centers of the
shorter distance. In the focal plane, the speckle field changes
its forin continuously without an apparent direction of difse.n*onte ado oplxapltdeimditl

-re motion.io t -oz th 4..-Le ,, rp has a uniformly
Tnis secondl effect is commonly called boiling speckle.atetrnmsinhouhheifsr

The properties of the time2-varying soleckle field have led poal hs nteitra ~ r nafwohrnn
- . restriceive conditions are satistied. ithns been shown that Aix.

:,I nuber ilsggesonsformeasrin theveiciyof he .t :; degenerates to a complex circular Gaussian process as a
diffuser to a high degree ofacrc. It has been less cneunefhcnri:mthoe. hsaitco
wle.i aporeciated that the .oeckles ir the boiling regtion cosqeeofteenrl-itthrmiTesaitcso

- eir a prn'els Ire miqzuei% ie'ned ry te sptve-zrime am-
more subtle properties that pertnit other information plitude correlation

about the scattering systemn .o be obtained.
. he present paper :nveszizaee zhe 0oertieso'f the soeckle .4'x.- t 1 A i r- I-- . 7 - i

:ieid near :, e : cai piane..s hat tne soace-tirne
vr nere -aenotes :.-e ensemor seag.W he ettintensity correiar*..n ie~r the focus ;s stronzly iependent ons ear-.We:nse--o

the sha-pe of the wave front incidnrtupon the :.:fuser and that epesti orlto ntrso h aaeeso n
may oe useful in measuring aberrations to hihprcsin scattering svstem.

Even in the focal plane, the intensity corr!ations are snown.
to imply simultaneous translation of, speckles in opposing
directions. The results of experiments that support the
theory are presented.

THEORY

We 2onsider the eXperimnent snowvn in r :g. 1. Monochromatic
plante waves 'rom a aser are rmcioett upon a lens with a
tranaiatirng diffuser ettgctiveiv in 'he puoii plane. if this --

situation. soeckle Inuisinz :s observed irs the focal plane of the
lens, whereas varying d-eirees of translation are oblserved
elsewhere. If the lens were perf .ect, one wiould expect that the
cOntrinI utisin of a scattering center of the diffuser to the am- -

p;:tvo-e in the focus of the lens would be constant, without any
:~oasi~g s te ~ffier ranlats aros th dimeer nr t.e t

:5:0.. H ve- - *:te . I sit i ed~ arn . rt. t it . . .:tro .o i

n ht n .r '
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The analysis will be restricted to linear diffuser motion. ,urh - .
he e vocityvector along the -z axis for convenience. Hence 7l& =e..- .

_ 
Ac -, -

if a i z. r denotes the ?mplitude immediately after the diffuser
at time: =0. thenat timet the ampiitudewillbe denoted by x 

'P  
- 2. n - , ,2 P' - , 2. i" 2

at - ct. ?i where v is the diffuser speed. The focal-Diane
amplitude may no, be found from the usual diffraction in-
tegral for propagating ati - LC. 1) from pupil space to the focal XexpL-,-2x . , 7 dd Si

plane'; that is. 
i

Thus no) lo depends onls on the properties of the !ens.
expA -ik' .k e . whereas Eq. ,?, takes a.count of the diffuser prpertes

Aix..X. 1 e ; x through an autucorreianon type of integral.
To proceed further, it is necessary. to make an assmtitmzn

X U ai- c. r7I P i z. ') about the form of the correiation function f a -I-,.i A carefui
analysis would take into account the nteract:3n )f ;he inci-

-;k x dent wave with .?e iiffuser structure to determine 1,. 1,o.exp "" .'+ Yn I dc'dr'. 121
but this is a formidabe problem. However. a corsideranie

simpiification may be obtained in the limit of 'iMe ntt:user

where X is the wavelength and k is the wave number of the structure. This 'imit may be formally taken oy re.lcine the

light. Pt '. 1*) is the complex pupil function of the lens. and correlation C,.,i -,v. f,, by" the Dirac delta iunction 2i --

is the focal length of the lens. Forming :he product .4'-x. U7. w. with the result that

.tI A(x + Ax. y + A.v. r ,- v and averaging over the en- MI x. .. t A 'x -Ax. A .: + 7
1

semble results in exo uI:X

SA*' x.%.t 0Aix - x. y + AY, : + 7) .\ nt

exp ,ist x ) - - cn i f-,. Ao N&)= a',' r:. V \,f:" .

-.tjj 2 - iX at- ci r + vi. 77"4 P~. C.. n.) P -I zf -
t exp -[xi" - V) + v I - .7' x " . ,A'

Ixet-At-. 'd do. t9I
,

× dd7I'dr. -%.I It
In this limit the amplitude correiation is hu prvp,,rtional to

where :he Fourier transort at a pairf displaced pupil functions.

it t ohutad a;so be n,,ted !hat if C % r ere to have a finite

= Ax
t 

+ A,
2 

-', -1. 2 ... (4 width. 7te correiazon ofi.4 ,. i. ould 'e a sm,-ithed ver.
2f sion o:" q. 9i. as prescribed by The ,utiorreia:ion integra!

If the diffuser is uniform it is reasonable to assurre thot a,. . F4 . 7).ao is a sstrcaiv a. ta, k Of more practical interest :s rhe 'nten.-; "reia;ion
-1; s aS~zEsZ1 att ZOZnr. P-uceSs. ztz correiat:,,n function - ic~uik -hapiuecreain h nestthen depends only on coordinate d'ierences. s- :hat unction since, unlike the amplitude correiation. tht itensity

corretation is directly measurable. The caicuiatton ,t the

. " '- :. ia ' "- ', - -."', crrst:itto i t t:'ze oca
t
-rianeintensitvt, r. i - A tr.. n

- - . -1C .7 - I :ur, r. i;nct :,,r n n tex iausisan pr ices

rf Eq. 5j is irnerted into Eq. ai1 and the sum antd difference . ix A. :. A, : +

coordinates =Ax. :Aix + Ax.. , A.: - r, - . ,1,

where _V ienoites I - I It : ai) convenient ,o ,ieifne the

.".tensitv correation in the normalized ';)rm

" y -7 Ai' t. .. l x - Ax. .,-A - - ,

ire :ntriducea .nto he resui-ng :nte-.iai. a ma: ,:,attt The uinmi % ::ta, : Pq 0,d rim , , A
iizeora 'her. ieids 

=

-A The nr.z.lie tensitv --r~~~~ . "1' ?)1inu ,

AAIA. A. 4it P.AA= S-., usi ,i' .. .uix,.A.:_ JJ , j : -v2I

AIM'

hereiere
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P . _\-. A. I: = f :Ax,[-_,2 Ay'ij; 7). ,20,

where the j, are functions. This factorization occurs only in
The result is stationary in both space and time variables: the the focal plane and does not occur elsewhere.4
spatial stationarity is a direct consequence of assuming a i. The factorized correlation of Eq. 120) describes complete
ri to be delta-function correlated. Equation 112) has been speckle boiling with no speckle translation. iSome degree of
obtained elsewhere in different forms . 9 It can also be seen speckle translation, in the I-- direction, for example. would
that the temporal correlation with Ax = A% = 0 is the square require a correlation that is a mixed function of Ax and r.J A
of the modulation-transfer function of the lens: this has been correlation that factorizes is commoniy referred to as cross-
noted by Yamaguchi e aL. 10 spectrally pure. since an analogous property of correlations

In order to include aberrations explicitly. the substitu- in coherence theory is known as the cross-spectrai-purity
tion condition. t.t!

1 7) = P(. .exp[ik 77 (14) For hard pupils. there is no full factorization in the focal
P, .ep (,4 plane as there is for the Gaussian pupil. A particularly simple

may be made. where P1 , ,j is a purely real pupil function and example is the square pupil described by
It", c, 7, describes the aberrations of the pupil. This results P,. 171 = rect(Ic rect(7/a 1. k21i
in

where rectlx i is the rectangie function of width 1. One may
\I A. A1 = - P Jf I= P - vr12. q7) P(c + L-./2. q) show from geometry that

X exptik [W(4 - 7r2. 171 - W(i + --r/2. 17]ll P,1 - ,rr:2. i ~pi, + -2. 1)

i 15) = rect (a )rect qa) for ic:r1 <aX exp "-L t Ax. + Ay77) dlcdrt-  
15

Exanding both aberration functions in the exponential into = 0 for crl a. t22)

a Tavlor series yields It is also possible to include defocus in the calculation %vith the

N 1 -11. '1. 7=1
--
1 -P, c - v-'12.1) Pf- + '2., ? aberration function

• A"- Jd-.4m,\
A2 If7f= - I ,:- '70 12 - k23)

x explikT(c, q)] a2

-ik ] I :where rn is the number of wavelengths of defocus at the
X exp--' cAx+- A'7)d-cdn

7  16) margin of th pupil. When this is substituted in the series in
Li Eq. f 17) only the lowest-order term survives. At this point,

A here straightforward integration of Eq. ,.6) results in

T-, ,~~\{,r A2 1) L- L)7. 1)sn a a t'iinc o xl

This is a useful representationsince for lef,cus and most \ Ay
or :he primary aberrations. only the term proportional to a a
6W ac survives in the series of T, c, ,7. It is also interesting
, n.te that 6W '&f is propo orai o tne .rarsve"-e-7av an- sin-' 

.

--ratzon o jeometriai oputcs, iatough ,ur )t."er aoerranuns , f .
;ne zher-order terms become s icant . Xr 1v, <a.

S , X. A.. ,-0 .)r ic-r. > a. ,241
DISCUSSION

Thus even in the focal plane ,m 0). there is no factoriza-
Mlich of the time-varving sueckle work that has been done has, ion of the r and Ax dependence of, Ax. Ay. r". Fizure 2
pertained to the scattering of Gaussian laser beams ^rom shows a plot of X versus -for A = ) and several values of Ax.
irffusers. In this case the pupi function is Gaussian. and. It can be seen that when Ax" = ,.a I 'the first zero of the
assuming that it is also purely real. spatial .nter.s:tv :or-elatoni. there are correlation peaks

P'. = expi- C - "2 . .!i aced sy etr:call." ,t both sides of the r axis. A possible
:n-erpretatmon t *hi As that the speckle :rans3ites -o some

where 7-' is the variance of the Gaussian ')?eam. Direct sub- degree in direct:.ns ota oarallel and antiparalei to the .-
stitution shows that tection f 5iifu'ser .or hisinterpretation of thte sniftea

,"" 7 -:r2. niP ) r 2. ) peaks snouid be zaken 5.. owat hogntl., as for Ax > t(1 aI
three or more peaks ex:At n :he .rreiation. although these

= expI- "o'1expi- 17;'-lexpi- yr 2 4;21* 191 effects become rather 'Ieak.

Since this product of pupil functions factor.zes, it immediateiv No shifted Peaks exist in , rry- ' :.,rreiation for ar-

tOii.;ws from Eq., 12) that the space-time intensity correiation -irarv. A-. when. Ar '= . 'h:. c:se the .. dependience
: .rIres :n the iense .at :act,-r::0 ::1 , . 1- - .". e I i .' Cts '
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-- EXPERIMENTS

- - - A series of experiments vas carried out in In attemot to)

measure thte intensit;. correla tions or a square pupil. The
apparatus used is shown in Fig. 6. A translating ground glass

S2 was place.! in the pupil of a well-corrected doublet 01 365-mm
- -- focal length. The lens was mounted on a translator to provide

a fine-focus adjustment. In order to obtain a large depth of
- -~Locus, a 1.30-mm X 1.30-mm aperture stopped don te lens

-, This allowed the lens defocus to be controlled Dreciselv. since
~~ a lens translation that was larme enough to be mteasured ac-

....... curateiy produced the small amounts of wave-front defocus
- that were desired.

- -. - - -- -A beam splitter after the lens allowed two photomultipiiers
- . -to be placed in the observation plane. One detector was

Fig. 2. Spare-tcime intensitv correlations in the :acal Diiane of a iens mounted on a precision translator, and a viewing telescope was
with a square pupil. The curves shown arefor A x =6 0. 0.5 1.0 used in the initial alignment of the detector apertures. The
speckle radii. A speck:e radius sp- iscdefined as the posatio f the
first zero of the spatial intensity correlation, which in this case isV X:. detector pinhole diameter was 2.5 uin. which was considerably-
where j is the focai length and a is thewidth of the ens, smaller than the speckle ladius s,\[ a) of 17S em.

The photomultipiiers were operated in the photun-countinz
mode, and the cross correlation of phDI oton counts was mnea-
surer, with a '12S-channel Langley-Ford photon correistor. It

* may be shown that the normalized cross correlation of potoon
countis is eq uivalen t to that of the classical i n tens itv. The

Fiz. I. Stace-tinse intensity correlations in the fccai plane of a lens -

with a sauare auvil. The curves ace for.A' = o.' itt7. 1.0 speckie

:t. form. as is iiustrated mo Fig. 3. As att aside. it snouic oe in -k. t:oc uz Th e-' cur as r ,r j. . . i5Oc Ki

noted titat the r derivative of XiAx. A%, 7) is often discon- tioti \1Z
tinuous at l = 0. This is unphysical and ;; purely In artilact
of takiniz the fine diffuser limit in 'Ossin- o.-m Eq. .91 to Eq.

The space-time correlations are aiso ,i ongi\ dependent
on the defocus parameter -it. The temporal yorrelations for____
several values of AIx are shown in Figs. 4 and tsfr -t = 0.025
waves and -t = 1j,09 waves of defocus. esoect'seiy. In these -.
:igures the correlation "Or A x chaia s oiv slizhtlv.
whereas the other 2urves b ecome somewhnat -kewved. This - - -

:-npijes that the speckie ;s bezconim,'o n0 ave a -areterren 2:
-ect Lon it transiation. wtaicn is -o oe expecteu vt icaytrom :s

rs t ;s remarkanle. -t-ee.hat a et cis4 it .41), 7,: e
a noticea .bie skewness in -.n, correia,;ons.

Fir defocus greater tnan anout A.3:. the rentpirai correiati,,n
w~ith Ax = A,-- = ) becotrres rather narrow ;tice it is reiatei ,

- he modulation transfer futicrwin. The tocher t.emorai cor-
,eiattons wit .1 -w iso necoine narrowatt on o imZnte



_C 'fir r au-, "riu er- r: -n- ., -r'l.z;ea:,e in F.z

:e r mc, r-ui.'u- ite e.: . hj. hers
io 2.--a:.-! . -r7 r Aa, ma:1. te nteaUrementi

I rr r t. !rit mea-urement fI
-~1 A-[ ni AP"i2 - -:i.-,% n .titriin -.tt becaiuse ot

.-or~eiAti.,n. m-i..r.i;.' - r': ti-t , t

!Mertiofl cI1rreAt:-' t' in-<. A'i. 'Sr ri.''.i,

\Ier a ur. i ppae ni 7t life"n. ins .rie lcmn

Foe. 7.Measure<: so. ce-,me iret c:i:aifsit:ne'i.l
if a lens with a sauare pupil. The oatai vins snow? nire ii

.5 T.1)specK.e rai: 'compare with F4 2

NIsiusa Ue -'Ci sa --- rre. i-i, a ens uitpnouon curreltor -is in r-raced with iian H P oiitfif oa atare sot~ anda 0.0255 7re ' he dats runs snows are tor'.s th processed toe data and corrirted trem :..ir :uri. '55:)ssiCiii'naewt ~.
although this correcnicn ,is smail. T-'picaa bagnal levei- sir

4 x :,04 photons. sec 'Cnphoton per sampie time in zneav
-'ragej, whereas -he dark ciunt rates %ere tvpica:' sL ai .51
pnotons sec in the two de-,ecrors. Ph-a-sn rate, weire f
cientlv low so thl it dead-time effects were -mali and nii be
ignored.

Miany experimental runs were made. and Zs pital -Xac1
mental data for the lseoretiCal temuiral icorreiatiiins itf .05s.

-iare shown in Figs. 7-10). The mneisurernenrsaire based 'in
roughly :,00i) tatisticail' independent reaiizat:.uns it -te
sceckle tield: the resuitir.: statisticai error is 2->.inr'.
ua-tsuamoereui coanneis .t 'ne ciirreiatior )tutp-it are sniw n

in the figures: otherwise the =aa points are drawn too ciiise:v
tohe resolved essti..
Some of the data have an apparent liscontinuity at = -. 71 X-

This was hecause 'he shitocn ctorreistor mteaisuredil corwreaiutns

inie tiir 7oirser Tht reiix -zrl if the orreiitii-tt was F.- :.1 'iiuupcei a ;en, itn

.1A .. t .....



196 J. Opt. Soc. Am.,.Voi. 72d. No. 2.February 1982 Kx. A. O'Donneil

- spherical aberration 'la'ancdwt -u , l..us. The
a-,resulting wave front lla~s amaxainuru aeformation of ys

-- . This corresponds to the (1.07-aoieture zona--ay focus. wnic n
is often considered -to be -he best to1Cal piane.

~ Primary astigmatism in the pupil leacs to etiects identical
with those with defocus if the diiffuser -notion is paralLl to the
tangential or sagittal planes. This is because Xi -%c. . ;

pdepends on bIt' a_~ wii:ch is itsef . nd .epertdento i in this case;

- the correlation is then affected mis! by the quadratic wave-
/7diffuser velocity, however. lead to other results. Finlailv.
- -- *~..third-order coma in the pupil does tiot cause any skmess out

rather attenuates the tails of the :emporal correlations. This
L _ . aV :s illustrated in Fig.12

Fg 1. Theoretical space-time intensity correlations ofa lens with
a circular pupil and 1).6.\ of ertmary spherical aberrations balanced
with -10i. of defocus. Shown are curves for Ax w0 15. 05. 1.0 SUMMARY
speckle radii. A soeckle radius is defined as !.2Xi% a. the position We have seen that the space-ime intensity correiattoso
if the first zern of thle spatial intensity correition. speckle in the ifocal piars *do not obI ey th.e cross-spectral purity

condition in the cases ot square and round puoils. True
- .speckle boiling is not -,en observed. and instead there is

sckle translation in directins parallel and anitiparailel to
the direction of diffuser -notion. The snare-time correiations
are stroniigi dep, lenst )r ierratiot and mnay ;orovnne a
iMoDie Mnet hoa ot MnA.i-l :; on - ransfer -:c mi -easurement.

Th p resent wcork masy possily be zeneralized to include
-- nonlinear diffuser notion and diffusers with a determinist~c

3, nape: tnese considerations wooid nave appicatiuns to remote
sensing.

It may also be worth rtoti:n- that the extierimental and
theoretical results preserl,i here have ties itrtosphericalv

'7 nduced soeckl!e Past.sr'-In astronomicali naging. The
mau-:correuut:-.-, rs tfzeilar specikle iota,- exthibit dis-

piacec time ,or-siL::or, tiei~5 simliar toinoseitFg.1 The
- 0,3 ~observed stella ef l~ rs ;nesumnaol due -o the linear

uS translatw-n f -he in-oogr e,us atmospriere i e. s iiffuserl
,Vg:.Theo-retical space-time ntensits orreiations if'a len s ott across the t4ec o--e;~ !nevznd Pd.

ri~u )LsPj 3_noa -5%. , 7-a',i proportional to :-z- -
5 

7t-ilj
7- e shc'o ar, -- r a, -S .0.)7,:0 speckle radi

- ~" ACKNOWLEDGMENTS

trats~aor e ir are atn C~. Dasi :t .in-. _ iut ot 3. Brane :n cotnecurlmur.'ao inriiczrtment e-r.The correlations a~.in t enrsrci.rsrtin -. s eeanwssupre

z- wa.ithin -i1, ito the theoretical values,.,with man% ri- Azhn upo
4uremsnrs4 agreeitig considerably better thart this. byt..Air F irce rirc it cint:c Riearch inder grant

CIRCULAR PUPILS AND ABERRATIONS REFERENCES
The eoace--nte .nten Isity . orreiationsor .circul .ar pupils and Gsa. r ictun -m ieier' tn Instn. Qit-oi
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1

limited litdefocusen issare iimilar li) results that haveji S. i ,ai-uu T. iisa, aia T .A.usri. 'Reai me etsciltv aea-
-idv been oresentect r the iiiarejetr- hvfi o ree O tsaii~ mcvi 0505 7111,ri~ie t ~rDec
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MEASUREMENTS OF THlE SPATIAL-TEMPORAL STATISTICS

OF STELLAR SPECKLE PATTERNS AT MACNA KEA. HAWAII

K.A. O'DONNELL. B.J. BRAMES and JiC. DAINTY
The Institute of'Oprics. The Otivernirv orRachester, Rochesier-NY [462., USA

Received Z3 October 1981

The spatial-ternporai intensity cortelations oi steiir speckle patterns have ween mreasured ov-er 10 nizhis June 24-
July 4. 19811 at Mauna Kett. Hawaii. The measurements inidizate that the intenssrt. crretiie, xas _: s-sreczril, Pure in

mtost nights of observation. The correlation :urr-e of the vriar- was : prca11 15 trs. wirde :he ::ent sic 12 . _- uas wit~inr

I . Introduction since the soecele imagee is nor oc.' ;atilv station-

iny. [n our ineasuarernetirtsx, -. C1 A_.x is smjallcorn-

Bec ause ot the :-.Uuaungaitmosphere. the stellar pared -0 the Laag entfio:'e. T'e rtos . correiation
mnage 1'-'med o- a larze earthbround taescooe is a :s nearly sta-,-onrar% tOr scch Ax. so nr-ctically we m.ay

tlune-va.'yiz_ spez-e pattern. While the size of the write the correlation as
eovio~ 41thestellar suecin'e inace is much laer At . I

tha th difrc~rn lmi o- -.he telescope. the spec:kies 0 AX. 71i = -__- - .3

pesent with in the tieo ar,- comnparable to the size :fIx. * l)
2

or toe .Ar'4isc. Thils hizrt fequerrcv structure is the Measurements it '!- emp 2.' Ln!nit correlation
Da~is of -he =porr'nr tech-nique oi steilar speckle tn- I :,x 0) liase ':)en- S- 'and Wil:ke7 ~

2 : tt't i clttactct ctttt~t in ~ P 1 x.Encianrd: :ne
a ,t ln ,s e C tiittC s- t.)at t0 ine

In :i-s ;-co- we cescose measuremnets at the tern- ns. Th-e 5oa-::m '.".a 'Srve iceen tea-

porai inc: soial.a rnmporal cu,-elationi -oroerttt5o it asred bv Dat% t,, a .~ '01 ac B'.szol aonnes. New
stel-' ' --er~~ ur-es o'-er ten nights at Masuna Kea. V'r Mk Th" i s-case *.n' t ioubL -. soace-re
HaIwaii These measuremients are in-oonant toncttatsuiC rnesur-"e-tts at :!-~,e iiz zri :hat thie .cec:*kles

toe comrn expiosure time at spe-tie intertetomettv :tenit os rk in. .c'--'- tn -ip' eousiN these-
U-6.. nd r~ r at.eleanito .,the, tech"nic;ues xt :it- ::rcti n nma ' ,a the di-ecuton
itaction limited irnaeine [6.-1, We deline moe nornra- )i pise %inal'O i :n -cCe nzn. Studtes ot tor-
iztd space-rirne tttteniit\ crretatlort ot toe ipecxte M neiit atn iCre 111Zais o m ion tuicture tUrn
.rnage as a)T the : - e-meni rep 'eDt -i% Lahiran

(:x. . X,2 -1 tt-e, ce te naItc
- it t'xr ~ - ~- -,teill: is isuia%

% te re x, irt x, ienoti scirial pointts io the mnice. i. T *- .-"-cd t~tL

and tenttaorai ine'tst'r... ai ie ntever heen rnea-
'"- 1 =lix .' - 'ix 1 .2) ~ ) ured at a ;uod siti,. An -mciaiong of =oige prop-

Srtes at ztlee ioc cions s :;nPr -mar .srtzih.etc
E I iztms tc:1 riari-. in torn m ut not . in t tc.~ ;t Ttt: e

t S IsLc.'. 11t-,ttet~ itZ
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2. Experiment ters of mean wavelength 3 50 zim and banldwidth .5-
The integration time was 0.5 ms or I mns. depending

The instrumrent used has been discussed in msore de- the imiaee time scale. The correlator was able to obt.
tadl elsewhere ( 10j and is shown in fig. 1. The eqi- a low noise correlation (:53% noise),.with less than
ment was mounted at the Cassesrain focus of the 61 det.ected photon per sample time on average duringi
cmrelscn at Mlauna Kea. Two phoion-counting phio- 100 s experiment. Atmospheric seeine raneed from
[ orniultioliers ian EMI 9S6'B and a Haminamatsu 6 arc s during :he 10 niiEhis of observation.
R9_S) were positioned to a known ax within a magni- Ans HP-SS commuter orocessed the data and store
ti d stellar mracze. A I 2S chsannel Langl2 Fr po- it on tape. The zorreiations -,ere correced ror the d
ton correlator mseasured the temnoral cross correlation current of-the detectors d ess than '20 counts s-Iz
of photon counts from the two detectors. It mnavybe cally). Signai levels we,-e sufficiently low (5700-300:
shown that the normaiized cross :orreiation of photon photons s- so that deadtirne eff-cts were small a
counts is ecuivalent to that of the classical intensit% ol be ignored.

Fit I11Z1 The space-time correlations were zenerared by
at rpeating measurements seauentialdv fo eiso

values of Ax. 3. Results
We observed the brinlitest unresolviibie objiects near

- zenith that were available to-Bootis and ok-Lyrae). The The mneasured correlations possess a short tume s
as pecl mages Were more compact and had a longier comp~onent (10--0 msi due to the speckle boding a:

tie scale at Mlauna Kea than at poor sitesi this pro- a much longer. nearly liear, component (-! s) asso-
hr vtded a larzer number of detected photons per speckle ciaed with random motion of the speckle image env(
0 in a correlation zrme of the imnage. As a result, mnea~ure- loe. Sinc e the imace. motion correlation was rather

mrswere made, with less spatial. temporal, and oPti- varrable from expetirneri: to expeiet ehv i
nt cal bandwidth integration than previous work. Detec- vided it, out to obtan tire correlation due to speckle
te tor apertures of 70 ;.m wr~ee used. side *,he Airy disc boiling orly. This pra)cedure assumnes that speckle boi

diaeter was -0 'um itt the maitnitred Una2- panwe. ire2 and imra-e mnotion are staristicalv ind-eerdent, a:
:5 -- cb... .u ut.. rimmd nt, erence COi- is discussed in refs. NJ] and [91.

stA seetddata series is shown in fie. . Each serie
:a inclued separare measuremnents at~h -neos:tse and

7 -oa- )t n s r _3

4 _E

I -rig __i~an !ieis
,a o,:.u- h lint 1

ALC
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mnents ofa =i0 0.'; 0.5 0.75 an d 1.0 Deckle radii>
with such a measuremnent requiring roucisiv '0 train. It

c:an be seen t.hat the correlations weaken without
chancing their formi as A1x increases. Tics was found to 5

be true rezarbess of the direction of Ax-. Fie, ' is t pi-
cal oaf what was found on 7 of the 10 nights of observa-

These results indicate that the soac.-ine intensity
:orrelatilon is cossetal pu re: thiat is. the correlIa-
tion may be written as thle produc:t of a space-onlY part
and a tiineOniv tart. It 11as been snown that this is
valid if the telescooe ouoil contains a nihase orocess .. tte

thievles or boils without any general linear trans-
anin o atasestuctre 13] Inee. vsuaeaton f ie. 4. 1mace intensity correlations wvni. 1, snectie

-aci tafi peaasee anu;,r eLt 3h 1.re lnavel visalzaio bee ra
tire phase in the nuLoU by knfzg cs~i h ele- rect etar v.10c on, andh 9 ec T cc. -rt une an a

camrror revealed thiat b-omne ot nohase str uctzure )tc.

acurdpredomantly .. This ts in con tra.c to oressous
mtasurements at Bristol Sprines. *vtree 211ase 7ranSta-
'ion occ:urred conisistentl% rn the oupil and imiace Zcorre- tie oserved an anrSUai erec. hle the Se,.-,4

atons xere dctdedly cross -spcc:-'%' n On onl% auiocorreintions 4ere not unusual, the c-orrelation with

ccc nsignt (nignt 6i were cross-sperrrar]v rraur~-e- A1l.x = I sp~eckle had the unewnec ted shaoie shown rn tFie.
la-c~s oninrved consistently at \Iauna Kea ii These correjations have not been corrected for image
-..- :h the i . servec, er ecsw'-az-e we--. m otion, and so possess the lanei linear :A. [-owever,

rtnah di'celz- correlation oe'<s -r-- ax = 0 the boiling part of he correlation goes below the inear
opecC ! cure. part of the correlation. When iorrectred for itniaze muo-

Os-tinsz rights Iand 9 land p n n...n -'a . :inon as described. this leads to a neatv inestyct

talaion.-' ichcnr.an cu a iu~ssian atnolitude
adiu ~nh ;sasfprocess. Iz is possible tht'he i-arwas n.ot. beh1aving

rattai J10. ccnreiauo -is : it- a statiotrar manner dun-e t.hese -tkhsc loth

-htI~ mdae neoenoe-ii mtay roi: nave z-een vaus cre

Fig Crosspectrai. impure imace intesty eeeatc
:ron "ivh: 5, June 29t. In artder atacra-m'teere. si ernai r%~- inzc~ -t'iisuoc.%nizion, j.i- u::i

'he :nel :.- r Cjzr;e"-!Sns
ienu-s !rc sc crearJsiomc tor. -a*ctttmaic:a :K:aitN-'N a

1.1 scacre i~i.-ec to '11 ::-:1-z : .t 'O
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7: , .sure torte of 30 mu. The inteznsitY varrance. however.
canied f romn 0.4 to 1.1. In contrast to measurements at

---- a poor ob, servine site (Bristol Springs. NY), the space-
0 -- -tune intensity correlation was css-spectrally pure on

N .5.--- -most risehrs of observation. It showed an anomalous ef-
'2i errwhih we are unable to explain on two of the

rtiehts.

NZ
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RFF. 4

Measurements of the wavelength dependence and other
properties of stellar scintillation at Mauna Kea, Hawaii

J. C. Dainty. B. M. Levine. B. J. Bran-es. and K. A. O*Dcnnell

o,'mn and .,n-ii:. itai an-is tecrinitu'ues. The experiment. Jim er r ire it .hat precmree
oi re theor% )i aa~n %ie-ai.rerenis -c the temnirai, irreiazzo r ..cr:.n .I nten-v and 'he hngher
minimentsi 4 *e Dcoccafi, leri, unctin i t) zvct. . w n are Timee-' 3-fjsn ine t..8j..

rrsec raitie Aere .OSvrs'.AM1 .ti -eoersta *.Itner Mmnents were ccnfl-,n. i-..ain :,se prediicted
.,% -, !,m. <to: 1,11 Ait meas urements were made it Maun3 Kt: -c, r. Hiiii.

1. Introduction kn-own amiount. A tvmiicai ape'r- 0
r diamneter ts, i.7. mmn

A larze number of rnea-uremen~so - h 7za * xa at the aietec' ir aitte. equiv alent~ mmnr in the Pupil
propetl-es of stellar scinttliation h-a% rnen re'ai,rted 'r pliane. Inter-tence 'titer. c-an ai-o be placed in each
tha it'erartire , ee Refs. .and )! T, our know ie,-,t crannei. The pnoom-iim nii nior F.Nl 9S623B in channel
however, no extensive me --urentent- htave been tnace -4. Hatmmamat - R -_'P in .- ianne: F) both have S-20
at v ery hizh quality astronomical ..nrsem ite- and ;ihuicathoieo ai'a are onerated in , me pnuton counitine
this mitivated the estuerinlents des.cribced in his cnaoer mode.
wnich were mnade at M~aunas Kea ijherx itirv Ha ai The Pr. .a ripertie,; of the photon counts are
akLude 4.2 km)i urin2 an eieven nit,2 t)erioc: in June nteasuret [,in intdevFord DC12S din-ital

and July. i9Slz. The main experiment xsai i.'e 7.ea- Crnti-.ed f.elt -akr -
surement of the xavclenvth v-.ariation of the relative .kzoip i.n In' the experiments described below
variance ir~ll 1-: secondary experiments to measure the rhe correjator -- , in either the auiioccrrelatinn
spatial and temporal properties and -he h-izher mu- moce or, a -I ij riiograrn modc.
ments 01 stellar scintillation are also describedi. Th e a u [ic, '-e "-n nod ie ids a itn-cranne! esti-

mate r .tn ,D n .ctioin (~ Iot the
11. Equipment and Data Analysis photun c,:.n :~'~ rCi i zi.ccessnve time intervals

IOhservattop..er made using a n!iccm Boe and soac5G a 305tt,,:

-a6oonetr zen -fown in Lig. L. The ,iiaC i0 2' .

A5 nich lies it-, i-c normal teiescone image plane. mae. 7~
ne primar- n-itror -into the detector planes at a ini-', -,%ec.s e-Id me fsmlslyial
it.cts .)t i. ),-7 The mieasutrement inerture4 cain .%%n n- hjt the notmialmzeu" cot-

ste setectedi-a-in-il in each _hannei artd adjust di relat in tiunc ! .n, ptioron ci i impiv equals that
ne ;Uiper-'n'i- -I ,r d'-uiacedi trim each ucw l\ b% i thiiac measured intensitv I integzratedv bthe

inea'irntet procedureI except at the icriin:

fthts. ;n teitiii-~it-idle titszsr-iten! zikes

itn utnbi,)scsI eekir ci tie jcu:iicorrtJtion tini:onit'
Sntes ?-.een ti-- uzh average_ phot in rates t%-nicaly

hISSi r-,r.o'.::..'-,si..icser ste ie n the ;.- rangje detec'ed phoitons per saniting
R,. ne,ter Neio - time . . depenii.eL on the variance 01 the intensitv.

s{~cnvl 2 ~t~tmi- .In the duima histog!ram mode, two 64-channel hiStO-
ifi5 ;.s5.; 2 i-I t. '5-igrams 01 the photon coun!s n. are measured emjmulta-

P -c's*i ' -. -so'neOUSlV. enaiiiirt, meaitn*ul cir)iparisn n ext ernments



-E- 5 to .e~uce the amount orf spat~al and temporal integra-
-an wit hout in easing the statistical error: for the weak

_______________________________scm-iitC ation ~3ere.aphor on oxu 'to )per sampie
time was reoured to vieid an error of 1-21c.

MI. Wavelength Dependence of the Variance
... ~. Tatarskis theorv or'% waepoa ion in a turbulent

*EE~ Iis m redium predicts that. 'n the abserice ot aerture aver-
-vn: nereiatve variance ot' the intensity *f .cint:1-

atlon .r , I u S - o i roportionai to.\- . here
is- t- .~ tne'waveientn. Earlo meas 'urements .o by ikeseil

N~ \elad.: ana Protheroel indtcated that
me a'l'-e v'rnattce wa independent ot wavelength.

___________________________________ nouLnE or aperture ao eragim_' A study bv Burke:
3

usin', an anaiws ietection schemne and 'S mm diam
ipertureA *'-oed a ci.apndence on w~ave; mztn but not

- . Do onotomyer ovolern,q' merei r:-:e or P J, n,*e \ - -:enendence. On ne other nand.
e o!, nstelAr ,CIt.A'.arr. e'rments o"s' the trarnstation ot *aser beamns

ov er 'torizuntai path-, oith eC tiel%. no aperture
do erai ire rr n agreement -xtr Tatarski's theory t r

hoe carried out on quas: stationary prcse slr' I. hu teasrvaet We osouLd not exp Iect t he case
st~a cintilation; this mode was. useA for ,he rwa- o t tcai nr~~t''o diffier aippreciabiy trom Ta-

th vaeeirheoedne i tevarc ar;_ 'i,rv prrittciarlv mn ew of the fact that the
s~rernent oi theeent ieavelenietc ofeae~ -t ne jr jnce

,s-cintillation. iThe orcrt e'tvtc' i. oeeznKeedneo srio~a
-' st- cnirrned over verical paths.19

mneasured classical nt, I.~t s; reiated to hnat t1'Le
pnoton counts nt-ti b%- an. inv.erse Poi--ont anso-.
T' ? normalized facttrai moments v, or :he Phto
c(,unts are sim .ply equ .al to t'he normaiized momett,
of the classical intensity: I..e general expression for the relative variance is,-

0

._,ntri. rng any% If.me fnCegration,

Thu, -h2 normalized factoni 7toments ot -he photon
-ounts anhcn -an he ca~cu. t-d trom 'he mea~urt-d iser . the w.oaelength.

p,-p,-vnXi an .n~s esi:nate ,t . e a is the altitude.
normalized n-cnie o: -i nsitv T-- :a,-ra -', the :raucture constant of refract ive- index
rnoment zav --o eda r~ 3n(- -. e fluc-aations at altitude h.

-''; n~ ., 'T.-he :xi~al :requetrc'. and
t, rectit . r,. ucai tr rr 7r~nter tuncz iln oi mne measured

*l-atti -e: tt n 'n"- ! vl An 3dut~' orture.
,he anoton rater ra., e~ce cx it n aJ to ut it - dear 'ret- Eq. t4) that the relationship between the
-hunter tIeall uime ,r ;(' t-ec The use )f photon rflitoe -arinnce and wavelengeth is not straightforward.
!-untlnz meth-ds in' he meaiurernent 01 stellar cn- attd 1-p1-nc- iii particular on the rneasurement aper-
tillatin :s. .)f course. :ot new.: 4- -; -io a very small aperture [Ti/i = lJ. Eq. 14

The tars t-Lvrae,\ ea nd ,Aquilae Atairi weere redluces to
-ised fo'r the obtservations The flux irom i- vrie in-
c ;deton the earths5 atmosptier is ah~ < 101 phoon
ctn rim- 4ec at ) m.1 On the average 'e lie- %hnerea-s tor a % lare aperture of diameter D.

-ected :0 pho'tons sec' n cainoci .4 Isiit a
I.-c--apertulre area ia a 'reen miiter 1 = 5-53

\.' FHH = t'.ra, ieldit a collection eficenc-: of The w.aveienzth dependence if the variance for a
in chne; .A ande B ire.. 4.5 overall :tneasursinent aperture that is neither very smail nor

*oilectlon etticlencv. Tl's *v'ure includes tosses due very large depends in zeneral ,n the variation of the
tatmosphleric absorption, telescope optics. and the structure constant C' with altItude h. We shall assume

optical system of the dual photometer as well as the that a sing-s thin layer at altitude i conttributes to most
phuotocathode quanturn efficiency. and it would be of the scin,.lation. In that case. Eq. 41 oan be written
difcuit tosunstantlai!- :ncrease it. it was not possible for a circular mneasuremnent aiperture 'it daanerer -



S. [, L -- Thus. if the vaiue of D is known or can be esti-

l.... ' , mated from a secundary experiment. the predicted

wvhere c D -. and J-, is the first-order Bessel variation ,i 7eiative variaton wiTh avelen th can be

iunctiun of the first kind. U'inmpurtant constants of round rom Fit.2. Note that or no aperture integra-
proportionality have been omitted from Eq., 7. and h tion i.e.. D -; = 1) the -7,6 po6 oer Law is obe_ ed: it

should he regardec as a constant.1 can also be seen from Fig. -2 that for 1) < D \ 9 : < . .

The right-hand side of Eq. t7) has been evaluated there is still an effective power iaw dependence over the

numerically: the results of this calculation are given in visible spectrum LT- = X-P, with 7 6 > P > 0.

Fig. 2 which shows the dependence of the ielatie
variance on wavelength for different diameters of the B. Experimental Results
measurement aperture Iexpressed by the ranto D 1 ). Simultaneous measurements of the probabili:v dis-

tribution p n I of photon counts were made for pairs of

-2 ' waveiengths selected by using the foilowing filters:

red ,R - 6:;9 nm. A.,\,FWHHI = " nrn.

_rcen,(;, -X 
= 5.5. am.A,\ = 3.am.

:3 lue P) -X\ = 404 rim. AX\ = 9 nm.

-Since the photomultipiier in channei B had a tendency
to record a slightly higher variance than the one in
channel .4 ,presumably because of nonuniform sensi-

tivity of the photocathode I. measurements were anwavs

_ _ _ _ repeated with the filters interchanged between channels
A and B. A typical experimental sequence involved
taking three pairs of simuitaneous -;,stograms for the
_oilowing filters in ch-anneis A and B. respectiveiv:
G G.G,R.G B.RB.? G.G G.BG.B.R. tThisse-
quencing requires oniv one filter chanze between each
set of data.)

The narnpiing inrervai At was varied from night to
night depending on the measured correlation time (see
Sec. IV: typically, a value -f ,).5 or I msec %as used. A

C3Z 5oC 6o CC 'otal measurement time or , or :)( sec was used, pro-
X/ _ viding -2 x 10

4 
sta:;istcailv independent samples for

each pair of historams. it took about an hour to record

:. : .arnee ', ) h measrian e. nire a , ate:L id'. t ,,r iif- and analyze ail twenty-four pairs of histograms in a

D 9 re :7ne nei=h I -:er.e irn e er Thevariance as complete filter series. The second actorial moment
:,e~d t:dli, ti.<v: -n: ", *.. .i i-ri 9~.--.4a ,o "a.-, :potcd. £.,m each histogram, and hence the ratio

9 , -- =' T'he - ' ter ' ,,t e .a t ,eed r i - .nthre of var;ances w-- )und: :ne staistcar rror of the vari-
. tr.,,eCVe ,,n -. Oatn /-t' -- =ance due to tne finite n umber ,f satnpies and photon

rabie I. Relative Variance of Intensity of Stellar Sintiiation. Experiment and Theory

Xy.r'G!1M'r 3A-A 4A3EO y

N 1..! . z 2i 3 i5

" *taar._: " ", , 31" , L.



noise was -1-21-. The absolute values of the normal-
ized variance were 0.02-0.16. and the observations were
made at zenith angles <40'.

The results for the most consistent five nights of ob-
servations are summarized in columns 12-,4 of Table
1. The values of the ratios of the variances predicted 7'

by the --7,6 power law are shown in brackets at the top
of' each column, and if is immediatelv clear that the .

measured ratios ik_ T~. 1X < .oare significantly
mmatier than those predicted by this power law, in this -

sesthe results are consistent with those reported by
others.+--: However, aperture integration also leads -

to smaller ratios: it should he stressed that spatial and 7-S
temporal integration was unavoidable in this experi-
menit.

The amount of aperture integration was estimated D
Dv mneasuring. in broadband light of mean effective -7

wavelength 485 nim from a starni~ar the zenith, the ratio 9

ot variances for aperturesof diameter 27 and .5 mm and _5
44 and.5mm. resctctivelv. These ratios are tabulated
in columns i iand 6). We assume that the .5-mm ap-
erture produces a negligible amount of a 'perture inte-
gration. The data in column (51. which employed the -

27-mm aperture used in the two wavelength measure- t~
ments. clearly show that a significant amount of aper- -,. ttsriCrra nt"t'o LStdrsotatn

rure integiration must have occurred. particularly on scuo .s-er ten rrtsnu at Maunta Ke-a Jtservaitorv '-trtaic's Couio
niszht 4. nti aeinUsing these values and Fig. 2 we can estimate s1c w dei :Se' ,me cuv'ves ire snse is b r,cen~ oes
the value of th-eaoerture integration parameter D \ h :.r ciarntv. T~rne 4caies measwa at ,.he Iopoint ragerom .. to
,or the 27-mm aperture that appears in Eq. '1 and 11) msec.
hence find the predicted ratios of variances for the dif-
ferent pairs of wavelengths. The values of the inte- lie in the'2-5-k1m range and the effective values ofp in
Zration parameters are shown in column 17. and the the power !aw- are 0.6-0.9.)
predicted ratios are given in columns ISi- 1if0. iAs an Figure .3 shows a plot of the measured ratios ofvari-
aside. it should be observed that the efsectie single ances 'columns 1'2)-,4 of Table 11 against the predicted
layer heights hIt calculated from the estimatLed D. , hi ais~oun S- 01 The broken line has a slope

of unity and represents agreement between theory and
experiment: the least squares straight fine passing

truhthe data points has a slope of 0..5 :L 0.10.
The na'a arnaivau; z~escrioeci aov itored the effect

oft temporal integration. The temporal correlation
- :unct;on consists or two main contributions, a boiling

_ / .rtpotren', .vnin :s traolv wavelength independent
-at; anzw - ott .ont oint 'h s-.-aied Ta ior

hooiheis whchi waveisnath dependent. since the
- spatial correiation function is wavelength dependent.

/ '7 Thus. in general, we would expect both temporal and
2- paiiitgainto pouemeasured-ratios ofvari-

ances that are less than those predicted on the haste of
spatial integration alone: this trend is observed in Fig.

- :~3. A~ll factors cionsidered. we conclude that the observed
/ rienavior with wavelength is consistent with Tatarski's

-, theory.

a-- ai , ~,,.IV. Temporal Correlation Functions
The teinpora, ,rauit function of scintillation was

Ntea4 rr i r .'s i Car:.moe9 ts a. 1 tena tnt USh e pre- .

tictea ) 'isnerts rto ic 1a1nt - s-s ,oser.ert ters're :rae. measured oin ev.er-: niznt 4S ooserv.ation using the
fltesercaierrt trs oe tdir sr~rsissctaen 7-mm diant aperture. Yreen filter -X. = 5.U, nim. _1A

%vit- 4-i ,rdiepend.ent measurements -it the rjt..,s. H',rizontai error i nm i and sample ,imes ranging from 0).1 to 0..5 misec
brwe rim the er.rr :n the emtnton,it sheaipertore mte-zrato'r depending on the correlation time scale. Represents-

parameter. The itroten ine nao so-yLe unwttir-nd represents igreentent tive correlation functions of the intertsits' fluctdation
loten~ '.'l ist-sn~i for each night art shown in Figs. 41 at and hi. The i

k i ''t .2 'c- P Pz CS .?9



It is, clear from Fig. .5 that the observed higher mo-
ments are consisitently lower .han those asso-:12red with
the 'oz normal diztribution. However. both sets of
measurements invoived some degree of integration over
space, time, or wavelength, and therefore it is possible

could be log normal. F'inailv. it should be noted that

the log normal distribution is not uniquely specified b%
its moments. 2 4 so that even if our measu red moment s

-had been in aereement with those of the log normal
distribution this would not have proved that the scin-

- We are itrateful to the Director of Mlauna Kea Ob-
-r servator%.. Hawvaii. for providing observing time on the

61-cm telescope. [his research was supported by the
_________________________ Air Force Office of Scienrtic Research under g-rant

"a C~ -AFOSR.S1 000:3 and also in part by the Rome Air De-
2. : zvelopment Center Postdoctoral Program.
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Speckle statistics of doubly scattered light

K. A. O'Donnell

7 le t:tuaCo pt ics. Ur tiersm\ of :
5

5ctmer Rocnesier. Newt or-. :4s27

Recre lune 19. 1982

The statusticai pro 'ierties of light that has been sat~eresi :-xie are stu~died in theory. .1 iacn 4cattering by Etself
zwes rise to Gaussian speckle. it is found tha~t thao rs rabilit, densities of :he ,oublv scaztered icht amplitude and
intensaN are approximatelv K distrtoutions. ivoicn :m piv stronger fluct.uations than Gauss:an light. The spatial-
correiation ' poperties of the doublY scattered iciare also examined. The :ntensatv correlations contain non-
Ga ussian terms, and. aithough the correlations are spatiaiiY stationary. :heY nuicate that :. e doahis% scatterei ligzht
isnot an eroic process.

1. INTRODUCTION because Gaussian speckle is well understood and is easily

Althoughi classical apeckle theory has become well developed -!nrcr nth aoaov

:n recent -ears.1 - little attention has been given to the effect FIS-RE ST ITCSO TH
.)f multiple scattering of coherent light. In the context of 2 IS-RE TTSISO H
sobeckie theory, the only rejevanz work has been that of Fried.; DOUBLY SCATT'ERED LIGHT

though the correlation structure of doubly scattered light from Our efforts wil preiently be directed toward cietermin~tg the
Brownian particle suspensions has been reported in theory4

5  
probability densities of the scattered amplitude and intensity

ard experiment.' In the following we examine the effect of in the far fi eld. Within an unessential factor, the scattered
.cai:-arng a Gaussian speckle pattern from an optically rough amiplitude in the .a. field is given bys
su' ace. It is shown that the probability density of scattered 1~c
arm duce ithIe -ar ield is not generally Gaussian in this cass: x . t JJ aZ li.gexi--x t
rather. stronger amplitude and intensity fluctuations exist

'tan rn the Gaussian case. Finally, the correlation properties i
of doubly scattered light are discussed in Section :.where D is the adomain determined by the shape .)f the zcat-

all consider t he scattering Situation shown in Fig. l. !erin rt" . 4 ' -"t ndo'' fuction thir doscribes
mcom~iex-annpitude, process atz, .1, is incident upon trantsrnssion mnoghte diffuser. : : s the distance to -he far

-. e;-daperture of a scattering system. The light is then ield, aid .k is :-e wave number oaf the incident liei-t. First.
;cat-ered ov a iiffuser and piroduces a ran-4om compiex- cors'cer the case -v hen t.e correlation scale or spec,. aze orI

::eprocess Ax. .in -. e ar f:eid of the aoer~ure. . - is t-.tcc. _1sr ,ran tme acer:ure. The at-ttzci:ucs.
nrugout --he analysis. two important assumptions wili se -7 t .hen approximnately constant over the domain of inte-

made. Our f irst assumption, 1i is that the random amiplitude zratuon ,o .hat
-7, S is a spatialy stationary circular Gaussian amplitude 1.-

urocesa. Henceaiuc, 7Pi may be zenerated by Gaussianscat- X. . 1 . expF - 1X2 71a11

tertng f rm a diffuser. although the details of this mnit'al 2
scattering experiment need not concern us here: rather a z 2

vt will be assumed to be Gaussian a Priori. The other as tmere a.. is ai,,z ti evaluated at the center of the aperture.
3umption ,2i is that, by itself, the secondary SCattering ex- The integral remaining is simply :.-e scattered amo)itude that
periment of Fig. I gives rise to Gaussian speckl .e. That A.it due to a uniformiy illuminated aperture. Bec-ase of as-

-7, is %iesmed as a deterministic quantity, 4X Iil be 4uniption -2). the scattered amplitude is given by -.he

.omle orclari.au 0 tn.The necessary cond;t ions tir : he product

4econd assumption -o he valid ire well knowsn r specle At. v A .1..

n-eury \Ios imbortant to the presentc anaivsis are the vnler anci .-' ire both %)MpitK ,:rcular Gaus:sian
restrictions that the diffuser must introduce optiicai-path allies.
iluctuations greater than the wavelengtho ig uht and that a Since ,, and A, are inoependient andcircular, A4 is circuiar,
large number of independent scatterers contrinute to the although we will now show that it is not Gaussian. The
amplitude at anv given point in the far fieid. A theors anal. rroduii if qn., and A,, are Rayleigh distributed according to
.,gssus to that presented below may be dexelooed if either a- .

or the iec'indj.rv s-iitteriniz exnertmenr lor bti : sn. 
2

st.
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ca-e. A simiia: discrete mudel 4 a Gaussian speckle pattern
has been used to derive the approximate 2amma 'ariate t.r.

• --._e ,."-he integrated speckle iniensity.'
:.-.In this case. the intenri ,fq. I becomes

AI . , . . , :'-Z. IP exp
I .4isI '~ ff "

/1 121

, : , where ,a is the spatially constant compiex amplitude ofa,.
ji of the jib domain D, and A* is the number of domains

pig. ,. The scatterine eo metry under consideration. A d ussian present within the scattering aperture. The integral in each
speca e ampiituce prcess .;'5. it is scattered by a diffuser to ihe term is the random amplitude in the far field that is due to

uniform illumination on only a single domain D. of the dif-
and fuser. As long as the domains are considerably larger than

the diffuser microstructure. the central-limit theorem may
ph .4,-LA) = exp - .4,1 - . .5, be applied as in Gaussian speckle theory, so that each integral

in the sum represents a complex circular Gaussian amplitude.
where We will aiso assume that integrals over different domains are

statistically independent, which is reasonable for diffusers of
and. =a, 2  

much finer scale than D..
and With these assumptions, expression, 121 describes a circular

= <:.4,2. , random walk of N independent steps :hat are. statisticailv

The probabili:. density oft. = ra, j.4,x is then given by speaking, identical. Since the analysis has been restricted to
a hard or unshaded aperture. the .V steps of expression, 12).

!.4; , = pC aw )p'.4,w 3.<4. - a..4,w id~u.5dKA,. which originate from different domains of the aperture. ail
• f have an identical mean length. Each step is the product of

7i two circular Gaussian random variables, so the probability
density of individual step lengths obeys Eq., I I ,. Thus we

where )is the Dirac delta function. After one of the in- have the purely mathematical problem of determining the
tegrals is carried out. this becomes density function of a net amplitude A composed of N such

41 £ 1 1 .4-,2 steps.
o 4iA ) = --' exp -. L + _ __ dx. IS) While oroblems of this sort are often difficult :o handle

pI Y' f) X 7, X - , I ,-').'0 " I X analytically. Eq. 11 belongs to a family of functions known

which, with the substitution as K distributions that possess a remarkable property.
.- , Jakeman and Pusey have demonstrated that. when the step-

X -1 length distribution is one of the K distributions, the result of
a circuiar random waik leads to a K distribution of higher

may be written in the form order for the modulus of the resuitant ;ector.9 
Specifikaily,

.4: , " a. ,the theorem of Jakeman and Pusey may be used to show that.
Pi". I e.p - csnK,! it. 101 if :he step iength is distributed accordinz to Eq. 11. the

random %kaik ,4 N teps ,f -xpres "2n * s a2str:1uted as
",:is :nrie.,rai :s .i tniresentation ,t he oeg'tt -- ri nr i :
Bessei :unction ,it the .,econd kind so that =;: 4 - A 0K .'2!.4

P-.4 tA (" • K,"' ( A - , I I I
p,.. 3 = ' ,.3( where

snere we have det-ned .3 
=  

i : =,r K Thus .4 is not 4 V3.
Raviettni distributed in the limit Ut large correiation caLe of

ni. so the scattered light is not Gaussian in Ths case. This result vil not be proven here: the eader may consuit
e now consider the density function if .- ... , wnen the R-tt 9 for detais. Equation, 13 is approximate for A" > I only

,veckle size ,"f j, c. 1 :s crmnarahle with or -mail r than !ie b-cause of the soiewhat nai% e model ,o" the scatter:ng process
,catterng aperture. In ,enerai this .sa-liificult problem. ised, iithough t is exact for . = I. as i'reduces to Eq.
iithotuh it 'il be made tractable 6i isir- in ituitive it)-
;rsimati(,n. uecificail,. "ne cnmiex .itt ri de i ., .*t '.i , E';t:,,n , has aiso ieen round to describe the statistics
"i- assumed -o he 4nspallv -ntant over in, no -t i 55 .,t r i ittit. 'cattr:ta nn,-G susian light. These ,. distributiuons

a-IZe omatns in toe -cattern-z apertUre. eacn domain ir:'e m "heir. anen ipecta midets -if incividual scatterers

tet.t. it the iraer ii a specy-!e size. More,wer.t ne .impiitul.e ire -.ed' or sien scatterer numner rluctuations are consid-
if each domain wiil be assumed ti he :a circular 11, tUssi.tt orei these effects are net!ected in the Gaussian scattering

random variable statistically independent ., -he other d,- -xnertments discussed here. Rather. the K distributions arise
-names, as tr.div neckles, of a Gaussian snMhitude pr'es, in - e oresent c next hecaisI- -f the n o;tuplicative effects o"
ire nruactcail" incorreiated and hence nc:snentenr ,n 'ns I,le i ctu-er:tet.
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Since A is circular. the probabilty stribution of amplitude .-

in the compiex plane may be written as

P

L- -1. i4 K1
F , X . 3 J [- -I, _ - . %.-,

where A. and A, denote the real and imaginary parts of A. ----- "

The cross section of this distribution is shown in Fig. 2 for
various values of.V in comparison with a circular Gaussian
distribution. For N" = l it is singular at the origin, whereas
-or .V > 15 it is scarcely different from a circular Gaussian. /.

This is of course because any circular random walk becomes -"

Gaussian for deterministic X as V =. regardless of the "_'___.----

properties of the individual steps. In physical terms, if a large -7 - - 27

number of speckles are present on the scattering aperture, the Fig. 2. Cross sections of :he K aistributions i 4oubi scattered
scattered amplitude statistics are nearly circular Gaussian. compiex amp;itude .rom Eq. 13. Carves are shown m oar, ;us

It is also worth notinz that the assutoption that each inte- values of the V paramete in c,' umparso. '.ib a circutar Gaussian

gral of the sum of expression t 121 is Gaussian will break down distribution. wich is the imit it the A .:s:ris asV AUl

as the speckie size becomes comparable with the lateral size curves are rotationaly vr nem:-c :n tre compex piane.

of :he surface microstructure. However. the scattered am-
piitude .4 will still become Gaussian if only because of the
central-limit theorem. Hence the approach to Gaussian
statisics as . becomes !arge may he different from that
predicted by Eq. 15). but this clearly depends on the value
of .V necessary to lead to non-Gaussian tactors in tbe terms " ".

of inecquaiitv '12). . .

The probability density of intensity I may be found easily -'
by transforming Eq. 1131 with I = A "xith the result that ', 3 ...

p~tl~- .v !S/-v- K .- - - - -:o•l,

where I. = Vd. This distribution has the normalized mo-
mea.t s

I .F. < - 3<

iod normalized variance Fig. 3. P obabictvd ns .ien ._h ci dot ." l;.-red intensity from

,j:, Eq. 16) for various s'aiues if the . oarame e.. A necatie-exo.-
i - - 2 .1'.. , i :ie iiai ritstribution Is 55;t , r comoarnsor.

The aistributions .t -1 :6, ao e ;n.a in Fi. t or severai references, as in our .naiss. the A distt buo arises because
alue- f N. In the case .V - .e normalized moments so he intensity is the squared modulus of t' independent cir-

as, :,-, which imply stronim ntensity tluctuations. For large cuiar Gaussian factors.
values of .V. the K distributions atroach a negative expo- Although the V parameter has been regarded as the number
nential distribution. This is ilustraten in Fig. I and mac also if correlation cells of 3' n' present within the scattering
be seen from the normalized mornents o Eq. I . which ap- aperture he precise manner in which N' may be calculated
proach the nezative exponential moments if "t for !aree for sinen scatter:'te parameters has been intentionally ne-

ected thus far. Particulariy since the probability distri-
The K distribution of intensity with V = I has arisen in butions nave ieen approximate 'or V > 1. one is left with

reiated problems in the literature. r 'ed ),, as that this ,mewh it .Ii an itrarv decision in the choice 'if4.V. We
isrr:bution applies to the statistic, ,)t intensit i Sen the eve p-tuiate nere that . mav tie .isen most sensinv bv

ir imliar :maging ,v <temll *oie rxe, 3 i.,ti<5ln '33Cir p-'Oi aicn ithe .artance ii the i .isttt)iit)n mit E . I6-o the

'ern etlectea irorn a rou h screen. A. oiien it :s ternap-i nir t .xat ntensitv variance. -h!s s <itiar t the method if
. i:e, Ipprectatef. it n:a alsO ::eemn s..wn int. A.ien spatiaill In,.sttI'' Me " ariance piratneter i -re n1:1 .'na %ariate ap-
,:onerent. quasi-monocnroim.iic tiermal light .. smv scat- pru'ximation it -patlll. nttteor4tea spec*. e itten itx%:.- An

reied in a Gaussian manner. the intensity statistics ney, a exact expression for the tiensltY vriance may he deduced
distribution with .V = is kng as the resolution time is much from the rpeults of Secthon ' as a speciai case ,f 'he exact 'n-
!ss than the reciprwai of the Iptical handwidth.-. The tensity correlatiin fimocton !T s -.'ll n t ceneraiy lead to
pn!ton- ,- untin 'Istr tl't' c'irres),,ndin o this . t '. li- nteger.. 4,i that ,or :nrtt'ive titi'to,n-, ik It' ' ies not

' - - -
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1. CORRELAkTION STRUCTURE OF THE eiec. in aver.,cing Eq. 211 over te statistics of all. j-'.
DoLBLY S)CATFERED LIGHT fuitrth-rder a mplitude moments -s'a2. q)i are enciiuntereot.

A -. nc b-ru t ber imtae it,: te,-ti.cr-aentt;e- r itht te G aussian factorization
10,10''JtL% CAUtteeO a.niitu- ind ntensity iii the tar

..eAi The aoocra~rt taken -ill be firs: :oonsicierxa it as at~ r~t-a( . + .C~iz - c'. - 1:,. 1

ieetnfli~t:c .iuatttit'. .n 'sttich case rorn assumption 21 hr
tite correiatkmf results are !hose of conventionai Gaussian wer
;pecke -heor%-. Thten a, rc-- ii e alowed to ecome an- C 0il:- V. r?- .'1a ai . itbo:. io '24.
Jomn. and the trr:c ensemble average will be obtained by av-
eraging )% er tn diinstatistis A small amount of al'aebra then yields the spatial intensity

trie .~aussran of a, .. In addition. rlaons
he rtard scattrrent aperture. which was necessary :or identicalI creaina

mean steo lengths .fr the random .%alk oi zection 2. vill now !~IxA.. i ' ~.i'-~n
,-)e tepiaced 3 a more zenerai pupil function P,.. w hich bJ.1J x -x ,, f . ,,- d?
may include amplitude mociuiation.

For a iven realiZation of iz'2. It. the res;ultsotf co)nvenitonal +i P(c ij ui2 eep I Axc+ A-7~c
:peckle theory have shown itat the correlation ftinction or J- I-
:artfieid amplitude .4(x.% I is given b' :P il '

7 ~ami the resuit is independent of the x and .% variables. al-
where !hnou-, it is apparent that Eqs. '25' and '22) are not re~atec

b,-he (,?so an-mom-ent theoren". edefine the normalized
2x 2%.1 % ntensity _orrelation as

Aix +x A% Ax2-0A; --

Qat,: ni -denotes the ensemble average ofQ (or a giv~en re-2
anzizaion ofail:. it. and an unessential scaling factor has been
ignored. Also. with ai. ni fixed, the Gaussian tactorization The quantitv , 1 maY be found from Eq. f22l with Lx = AN
theorem hoids. so that the correlation of far-field viensity is =0 -'e- introduicing su-m cnddifference coordinates in the

given by- 2  last in v-al of Eq. ,25,. there results

1,. 1 L Ax. % + A-1, it \'A A- i _L1 P1 c. q

JJ- - PX e x Pjdc 1 r - -'. +.1%7 dd

~~~~' f iA7. 2 ; ~ 2 '2 s
These results are valid in the paraxiaii region wnere the on-
veiope of nhe apeckle pattern is nearly constant. Another wshere
impo~rtant assumption in derivine Eqs. i119) and 121l is that
:he diffuser surface has much finer structure than at . it' or D~ 1: P, 2. i P 2. i

P,~ vt. This in effect sets a lower limit on the speckle size of
a'~ *t ifor which the theory to he presented is Vaiid. .2 1. -d oit I -2,

These results may no%% be a% erazed over the random func-
lion a,. t. From Eq. 1191 we obtain .b z. v, 2.d zd '291

x~. 1.4; Ax.. -, As i %nd

P i z,' . : .'

-,Tit.e :ir~t 7er-'-j Eu. -he- lt u,2 t !- trtuti-r :I
X ex p i- -1, A .1 A- 7,iddt n, ' :ntettoitv :-rts:,ition . Xnce *ne 'tier :errtt rer)resetis

wvhere i denotes !ail ,~ , denotes the averagce of Q It is instructivye to ccinsicier the i otersi lv co'rrelation in tw,)
over the entice ensemblo, and we have -aced the fact that a,". limniting cases. First. %%hen the speckle izeor a . ',1 i much
it' is spatiaily statiiinarv. This result is itidepencent ,fx aInd gtreater toai tie icatierit-4 aperture cr29. -7 -. t' I ithu
*and is rather simiir -o the i at;4.4ijn ''ecx:e te~uit H's '11-, t.tt-i-i .,Ini-it-t.tr:m - it r.' i :0
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makinit use of the a'itocorrelatiiin theorem. we obtain 'nown hit.ieh inc .s novIGuai 5catterni, ie' rise 'o Gaussian
-) * pec le b% -,e pronbability dens->e :hat e-c-ibe the.

\i~xAi~jJJ~ torij -ci'e-.a -iiare .ipproxrma:v.v A it srinutors. In
jrnerai. :e A n~s. oLutuvns predtict arzer amnpiitae ana in-

+1 AN~ -7 tensaYv Oluctuatr .ont 'han arise in Gaussian speckle. rhe
. expll : I--t sis ,1 atial intensit% cor elation if the dour iv *cjttered iht

Th~snoralied orreatin sarc atthe alul' hen-I- consists ot a Gaussian term in addition to trnms that retpresent
This~~~ ~~ normalize th rtn~ correlation sat ttevlu hnA

A% wnhich is the same as the normalized v ariance of-the nun-Gauissian errecis. Atoe h tn~vcreain
ix istrnuron~ne \ andthe deaysto~lit to lage are statistically stattoriry. they dio not die 'ut fo)r !anze spatia;

A. or hence is st~~~ ~~~Ial 'Lorltoanvrdeot separations: hence t he cioubiy scattered hizint is .,t spatiaily
stationa -aithouen -Darially nonergodic. Phys .ically, when -er de:iaNt ) heKisrbto 4.ul cteeme spcl Tize deiasa muc thete ba titrhuiu statteringapertuee~ne oecle izeis ucn'rerer hanthescaterng perure lizht amplitude has not been nieorous. as it '-as mane us;e or
size. tne intensir in the aperture is spiatialy constant. a.--

a rather ideslizea model of a Gaussian speckle pattern.though this constant varies over the ensemble with a 're4a- Hoeew ~seta etrter oir ecnsdr
t i'e -exponential probability distribution. Moreover. tne lymediictthnhenuiietorpeetehre
'tn r neai in the tar field is proportional to the intensity It :seuce -a h itbtinapxmts h xcpr-e is thece scateit thetre Eqato ditibto thpreiretefthoracpresrt'-n he cateri' aertre.Equtio 2.i i thretre robamilitv distribution of doubly scattered !irht n the same
ine intensity correlation ora Gaussian speckle pattern whose -ense that the gamma var:ate approx:mates niscrared
mean intensit% xa'res as aneetrtve-exnons ntiai\yariaole ver ,assant nes. ic i~a na~a~n r

Gasia pecK.- eni.sic iia diztosir
the ernsemble. Thus it is riot surpniviz that a correlation md nbt css eemiies h iiae eto adt

exists ~ ~ ~ ~ ~ ~ ~ ~ ~ o ,exenadi eartdpit.ihe theory presenred. a always. wuD le throuch corn-
When 7?1 -i iconsiderabiv narrower than the scarternnd

puil frmI ehv - parison w.ith experiment.
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Correlation properties of light produced by quasi-thermal
sources

T. Gonsiorowski and j. C. flaintr

7hecvte .kt:nccst 1-i rn 462

It:s well k:n,.i tn arro-,atto thernia; i:rt can be simnuiated b'% moving a irtino-dtajs olie in tt'init a aaer
neam 'a so-ciies quasiotriermnai source' In ,r.is Lretr. oe snow 1P.M. vnen =er. .ntettrat,.n .i intonsiiv witurs.
trie snattat correatton 4ntecratec intensity !:,rn a q'aas,-tnermat '-urce Gioes not. nt z-aneti. ntate as5 it w.%iula
t)r a tea, trittrai source. In Particuiar. tunre inacratsms can ncreA~e he snatial coherence area.

1. INTRODUCTION wave 'see Fil.i . The area illuminated is controlled by an

Siturtv% after -*-e :nveotion of the laser. Marienissen and aprueA 'such that ztis area is much larger than toe

Sopilier- described a ouaai-thermal source with an adjustabie c'tito rao o ifue ufc tl sficinl
m rme etwen o aa Isec Ths surc ~ mall to fulf1i the Fraunhofer condition at the ibservation

aztinZ attusinc_ .aisK.sucon as a aroundi-glass mate. pt saos-necrm ore
.It' tie oitttuser :s coristraune: to' Move traosverseiv to the.:MIe byv otnetent .tsot. aa taser beam. The fie d . Dpttetcscnn

dby ti source tras circutar complex Gaussian otw Pual axis. .then'tit stiali fie'ld an~,Dopeiefetecnb

provicded that certain restrictions are met. The ntd dsnetetm aitosit dcob et
opataau Turerence 'proerties of t .he scattered t ed are covernet ue r uhiwr-a ,h aua Icain rh
b-e Van Ciz-Zcri theorem-'. and the tepra 'igt the comptax ampit-;ude alone pto ice, an adequate be-

-' p
4
!-:es are zoverned iv toe transit time of the diffuser scrip .tton 4 the optical fielid Assuming 'bar -bhe diffuser is

toe aserbeamandby aDopner-sifrtermitt "wn compared wNith the Illumination stasuienath. then the
n- a inic or onse- vat ion. phas aQof the scattered wave will be oni. o)rit ditributed

otinzi-isr famr cotole n e-z betwe-en -r-.and -. and. since the aperue~ -.vas chosen. to en-
'ate~ OCO n ~ne'tenr oe- oed t ilustatethe conipass many correlation areas a large number of scattering

-it ua~thomoencus urce-- ad aso i stuies centers willl contribute 'o tiri tield at each observation point.
4 -_i oheenceof aditio scaterdovzramicscoere bv Under thezze conditions. he ciomntex amplit.ude I n -the far field

nero~ ofraiaton'cateed-'szrttns oveedby Will obey circuiar comolex Gw~au-itattc- which may
a' - - - Toee cl- -,n cor-espondence between h ul eciaod
in nd coherc-c-------and the theory 'it time- Puldscie - :' Pacc- t otptUC>rrxat~on

a:,inz p ecklea.'a articuiartiv retev ant to a study i this
1.4,iA'- x < A t

La'mr %'v -'uotCertain aattuiento''rai -tat,cs
ne tentE p. ii

t
uced bo s i -thermat -ources are uuiteadii- wnere dtenotes an eriserttme avera-e. it -s sumned here

:e-nt - tln.,n r1ealt hermai sources. such as a prima-' that the optical field tso-dc-sense stationary in time anda
ticinerer' aijurce or soectrallv tiltered blackbudlv radiation. 'quasi-stactiiaia Mo 2no.5cc that teovera .%nrn ;.1b

This d'ifference resorti irom ne deterministic motiono 'it ervatin points 'x . P. jiverned by the c-'rraiaion properties
a ittuser. snictr zsoeral1% Produces an amplitude sPace-it of the diiffuser, the space-time atmptitude traeation is in-

dpenldeni of' x and 9.. We will also be interested in the:ross-correiation runction that is flu, reducible to a product-
'Ii temporal and s-cai corretatrons. We tillustr ate this dirup--ieitnit rs ortto
rerence on% snowin, zhat the normnalized spatial correlaion Alt ;.iii x.-A.-A
tunctuon oIrim tin' nrc a-ed intattet"- :creases in width as the = .r~~ 4 . I -.. t' 'I
nregration time increases. If the eniydistribution across
* ne .uiairhernt source .s iratiSsuan a.4.. Airect aser Jlb. where Ali i- I and
mtrin r.,n. then the space-tuice cross:cirreuatbon a, reotc:bile: 21.'. m.-
.n nt -ase. the joasi-rhermai source anda a t.rue tttstmai

s uuc tn ave the ,ania soace-rtma -ena ir o)ut tot qites Ni jet a's 'ear- '1-ese correains to e tttataisttcs it tne
difritreasans. otffuser. We assoute that the citordinttar system is chosen so

rtat the dirtuser moiiion is purely along the atxis. with velocitv

2. GEERAL HEORY. If n e 'catte'ed ampiida imniediarely after t he diffuser -

at :ine ' i sic i. thett ii lite - it wil h1!-ex -t t. it?.
litsi-eroc~r~it t'ced viltttait tto itica o, h'e titi platte i, :n 'ha- Frautitter v is tha

Ve ~ ~ - -- '.! I .~.t ; ' , - '- "i
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This can be sirolicitoo a sngie inrezxrai
1
'

.K1 Ax.., J - \'A. A1 id.t.
T _7 T

"-MOVING Tog!ether Eqs 14) and t)express the time-a'.eras-zd in-
01IFFUSER tensitv correlation for srOatai separations Ax and A%'.% at a lag

Fi.1 uasi.rhermal source is Dnxiucedib.-!ilumrntini!ieue time -,ro. m an aperture -4 i77 q normally iluminated by a
ltu"vw'ne 'lniria an aperture. mono~chromatic plane w.ave or wave number k and ili by.

a finec diffuser that isrigidly translating w.ith veocitw L in the
.A,~~~+ X.. t irection. Eoomation 181 showo :hat time inte'ration ef-

=-expi~+ux>~.2 .: ff a -:t cf.riokes thle instantaneous correiatiOn Witha
NZc'o Further

i :te instantaneous intensity corrclation is not .educibie, i.e..
X .. ~ .77 5X~iiV~~ - ~O, 'it 4 dues not factor in0to i.e product or space and t:rne tunctions 1.

%,here X is the wavelength and k is the wav.e number of zhe -,hen time integzration can also affect the spatial extent of the
light: the amplitude cross correlation follows directl. As correiation.
3uming that the diffuser is finel.% and jnjiormlY zround. sie
may expect ai,:. 77) to be a statisticalty ;tationar. de a -or.
reiated process: that is. it has a correjation functon that ci- 3. APPLICATION TO A RECTANGULAR
pends only on coordinate differences and .hat can be 17modeied APERTURE
by a Dirac delta function. This assumption can be snow-n;1 T., odeonsrate this phenomenon. consider a rectangular
.o result in a normalized space-time intensity correlation of pprtr
the formaetr

.' _1 v. Ar) -AVix. tlAWlx - x.+ A. At))
2 ~~n~ects czirect77,b), '9)

2 nere recta., :s the standard rectan;ie functzion of width 1.
X exol A:k -x -7 . t':ddrl 1 41 From a strrt e -eometrical anai%3is one mna'. show that

* .'..Cc:.'.i fo A <a

a ilidd77 ~ , Hetnce the mt'.::itaneius intetisitY,:.,- corr iation i

S
2 ~; I Atr iA: a < I

-It A. An= ,therwise..

1mg acr e 4ititazon ie -- m t.5'

= J rectvi~:rut .d .2)

C~t. '0 ind iefintinit the dimensionless coordinates

A 'here T t the :nert;t nd the tart iem tesi a time- X, =t~

18 X'
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size. leads to the relationI

XiX,.

fain : - oX -:' ilx, sin 0.r3.c aC

= i)otherwise. 0.6

t14i

Note t he Space-time coupling that prevents factoring Xx. C

0into separate space and time functions. Appling q
S) yields

-0 .. I 
0i

Xd :.* 75

wnhere 3quasi -2ziertiI source. h Tamasrste amount i)t %:me
integzration.

A:= maxo 7 -T. - - A:= minso - T. a iI.

To simlify this sxaress:on. let us introduce a parameter 3
that measures the reative amount ot time integration: -N

L -T a

N~e ->=00
MAo. since zrses oace-itme couopiigz aitects univ toe x, com-
polnent of -- e co.0 eain e' a conitaier )ni,' zeparations 0

along this directioin I et Fi- ii F n -il v c h'oi sing a 6i
nest i-ariaoie:) ni-te4-a r - A, T. we antain 20

I\ nil -,I-
hix,. 7 1 -34dc.

wriere 0 . 52

Euuaon 17 ca. h tnivuail ornuri~rcad :o F~z Time-averazed spatial nitersit\ correiain o4 3as35-
-i ~ ~ ~ ~ ~ ~ ~ ~ ~~~,rra ca e sc'avtal ruecai o *f ;ource Ata rectangular aperture. The carves are tltar-

-:ietc I ha eavarag- : .-- orreiatwin o') d'-lerert <,a-ntitoettcaI'. 1:.s.

values o 7it -. m :ne-a:oh two i) -mlc't effectst
the ecu'ioi <'c ar--lo-~ i 'ota.n ian n- ; h reatton bey ond the istantaneous ftur-n. One 3so sees tn::

.he7L n- -h -. e ase 3. ar:eant reoreserts a sizniticant amounto.t tne
.es. .CI .dt

by

4. A-PPLICAITION TO A GAUSSIAN APERTURE

(J - titen :h,- diffuser i.; directly illuminated with a laser

where t.ann are 4ien ;n Eq. , As is .hown in Fig.. 2. ePam n this case. the appropriate aperture function is

:ncreasinaz ' en-ice .ie 'a a-ice This reduction i)f the C2 ~2fl 0
variance tmoe-ha :hi e ta :ic-n b~ecomes more incoherent expin-
Ath inicreasen --:'e Aa- .a-fl This eftect is wcii known and
r, tact :s a-en -- -ejue Decx'e tn :onerent -ma~in' ;'z wrn e - renresents the waistsire if the beaim. Fillowino an
ems. -I, -i iilrthat >I Section 3.one otains the instan-

-e-cc-it-u -e-C, - e C.1 'f u t t -oatuul corrtat ai;. , -atne-,u n ' ensi- :r 5-i orr~iati-In

,..fI-i .' -. 'rttaIC I melk is - -"=? - IZr :r --. a--C-0-
.tzei en z. te'-- a - str =rrte t.he cnarnn' s.-r-an c

'n e'-- ----.--- re:ttin ta ire-i -ett n!
In F-az :- :-t -c'a-ar-tauiirorreiation :s -,ih wer-. n ni- m'e.

pi.-tred :or - irce 3 - -. Thee-rse .3 = ocirreon. toi A7 -. A
't-atwar in :: Ill m amournt ot -Lime aver-aging r. .- _____

,~te irnr.,1 .loU e it -a itancious wtrnmt'v cireiati-int
n o'e ter

~t'oi= I "otj

--------------
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Tne behaviror or 'he spatial correlation :unctzii tn e-n'Lnt-
e""atea 'nrensirx rmacaitera ore isr e n ,"1 P

.~e.. .. ic irt difernt rn nat ut a true thermai source.,ct~~~~on"'sh '-r a'ii- diffr-- :rr A6ci~n
L ""nt prooaated from a thor ma; source. su-ac' as a soectradl- w c"

- .. ,ere a .- acknoox- 'it t esm ntetnsitx' at, all points on the i
',ure. aitxax retains the .eatucnititv property -i~e.- ernains "D ~a im". P it D,'P f: L. reto 7v

,:.oss sneec'ar v pure,. provided nat'a certain path Itl~if n c"n ~a" P ' xeani
;'orexed.-' Thus the shaLne of 'ne spatial inensity correia ~ , ~'r- Oi'cina~9'-"'

tin s unaizeictea hx rme axeracingv. D , U -n's. M, a> inch E -C 'eea'n inix
e cet 'i -,me intezarton 'in the spattai corneann vas --!'l! 'in"' ""Pr a r<x.i 'ione"''an: 4irye. *Opt.

tuJCe bOecause f t r eievance to the -rcf3 xoeriments
It Hannur; Brown and T mis'-' intensity :nterteromer '. ' Am - -t--n iC '3 'x'u'
fn chtose 4tettmen is. the time 'x eragina was unavodable.and 4J-'n'-e:' 'syS i'i i

it was assumed that the space-ime co ,nerence t unction was 'e'mxee nc 'a' 'r-- o 'Am. 68. -- ,1
reouc; n.e: in etfect. it was assurned that tne spectrai intensttv- -

a1cross tne stellar source was constant. Under this conottion 1 .GI, niH at Ten::cne)~rzn o
- ner-n . 've'r',it &e, A 1 'iUC Diriu'::c~t" 'so

.,r reduc:bilit-. the shape of the soatial correlation tunctioan Acza '9.6
was 'unaffected by time inteeratmon. annc the usual Van Cit- M - n H. P nt--''vs *' "-'auin cz:prec

tetZrieieationship could be user' to estimate "he an- "' i-" i nc, !>. .'.-5
- tar diamneter or the siurce. Asxwe snuw,%ed in Section , ann . r - i tii a'e ieec
in Pin. 3. simrilar experiments using a quasi-rnermai source nt-it' ret''u-c- '"c iser vcat'e'i" ' pnmun-na. 'ot. Ea,. 19.
would lead to erroneous estinrates of the diameter.

The analysis of Section , also illustrates the difference fie- :, H. AI. P lini 'e %--s 'r,i'i' nmeirow,.iv a1 compacitixe
tw' inite axeraces ox-er time and oxer an ensemble. For rix Onz A5 a 05 'in - 1

example. were the diffuser to move in step~wise tasnion during " VVA:'- ., M. ain6 R. Los' in. "Space-timne
*:[ n dc: ba moving

*.c time integration. and if each step presented a comoletex in: 27's a9).
new secti;on of the diffuser to the illum~nation rezvan. then the 'p .. ; Nc - -e'"-n.' nce nnmasbramvn
snat~ai corretation of intecrated intensity .%oucd retain a aoe7'urt-,'e'c er -e :4c 'a ')of m mun. 13, 29-24

,rtnstant shape: that is. a tinite ensembhie average does not ,i95i
'ciad the same resunt as a finite time average witn uniorni 'u.AC31 Dne:."ur n km.-72. 'P -'9r- -pecle arth

ff~user motion- Of course. in tne zsnerji case- we snouid - - r arev-a, ztee- T.~cn'p-c A-''--' and N. Takai.
a ' -roct''v fnctt'in vi: it cescrine Iis t,tt , le _n::- Jer <eo~inc zne' su-" 'u''lct era-

.ffuser And us-e the full analytic signal represenr 4t:oni .or tVem .t,'ie ni x 5 7-9

Mciraa1.9::
'vs~~~~r i-x- tr''sat is Letter> ni'%-'r! :.ei -'

n.tx'tu. n r.m a cnuasi -t.he rnai source, i.t s od1-US thV.at 7r'.ere A' ,,.6 .

a snnar -!ttect in the tenia rraii uncrin in%%n'i. ''-in123n'iinrnetiox
4-attai :rnregation occurs-.'~P"' . c x '*'' n''-~r itn i

'en' t. r' ::n: [' " '' n-c !neor% t C rrotat:in

ACKNOWXLEDGMENTS Lndon 21. !,a7

"''K -,: '.xas suorted -A t -'S. ArmY Research Office L. Ala -1 K. 'Ii U '\'
:n'aer grant DAAG-29:o0-K-' '4i and b%' t.he U.S. Air Fi)rce H-iana. .An-,riarn. 5.,, ai.-
')ttive )t ncientit~c Rcs,ac 'ander zrant AFOSR-Si .o it . Darn: n. 'I et rc se c:'t1'nc. t-ms

nieita R'icrezter. Rocestcr. N ew 'tr 4i'n.''r '-n aDii- 'rt"3 . :nwit. *:''p



REF. 7

96 O)PTICS 1EITERS M) 3 N F- brui-x t1983

Enforcing irreducibility for phase retrieval in two dimensions

MI. A. Fiddy
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Unique phase recover% frorn a sinile two-oimrensionai intensity data set deoendes on the comnolex function., heing:
reoresented :)y a Jlobauiy~ irreduc~hie entire (unction. Fu nctions of tswo comnPiex varnabies. in ceneral. are likely to
be irreducibie. nut no conditions have neent Stated to ensure this except tor ohiects consistiri f specific arrays of
points. A condition based on Eisenstein's criterion tur irreaucihiiitv is civen here that requires two ref .erence
points in the ohiect piane.

In one dimension. it is well known that the extent of ' Phase-Retrieval Methods in Two Dimensions
the ambiguity of phiase functions that can he associated
with an observed modulus distribution (scattering, data. In practice. we have data not on continuous variables
image data, or a coherence function 1 is expressed by the but only a finite number of discrete samples. Only with
distribution of complex zeros of the associated analytic an inf Iinite number of samples can a unique represen-
function. Unique phase recovery is ensured through tation of Ft z be found; with a Finite number of data
zero location, for example, by using a second intensityv points an infinite ambiguity is possible unless some
or p. ior k-nowledge about the object, or by the guarantee estimate for Fi z is selected on the basis of prior
of a zero-free half-piane for example. zhrough the ad- knowledge or a chosen model.8

doton of a reterence wave. Phase- recovery. algori'thms considered to date include
In two dimensions. ihe jeid before detection is again the two-defocus method and those of Gerchberg and

analytic, and the phase a. iig'uit% can he expressed by Saxton and Fienup. The uniqueness of the first two
the number of non-net -coniugate irreducible factors in methods, which require two sets of modulus data, has
the Osgood product. been discussed.5 In practice. withi sampled data, con-

% vergence to the unique solution. if tht aethods converge
F-i = FL Fze i~ . =Z at all, is not guaranteed. Fienupe' method requires only

gte moduluF- data _set and. ideally. knowledge if the
where F.,, are 'lD rreducibie factors. c are object support.:" Oniy for a nonredundant point-array'
convergence factors. .,are polynomials. and 1., are object can one easily- deduce the object support from the
integers. It has been shown that the set of polynomial autocorrelation support, and in this speci al case one can
f .unctions of two variables and given degree is a set of also directly determine the point amnplitudes'!: e-.cam-
measure zero-!: thus one is tempted to assume that in pies of nonredundant arrays have been given hy
general Fi z i will be irreducible. i.e.. that N = 1. If this (Aola.-
is the case, then a phase unique to within trivial factors We consider here the case for which inly one modulus
can be associated with the observable IFix 1. x,)I12, data set is available. The iterative techniques listed

However, one cannot assume that Fi, is always ir- above, and hybrid versions iof them,. bave been com-
reducible. or that reducible Fl: I are unimportant.' as pared in detail."i but for their convergence rati,.er than
has been demonstrated. for possible uniqueness. However. uniqueness it .p Ihase

It -'huuid be noted that the zeros it F, : are lines in is uiarariteeda :i ve adopt a model for the ihiect based
so: iace and thus -?x~end throughout that space. on the Fourier rransform's h)emns an irreducible poi.

The .)e f -he Huibert -:rans:ormn tci attempt to construct nomiai oi degree determined by the number of data
;,:1from iiie; Fi : w -ill resuit in a function that, in points.

zenerai. is nut even analytic, in distinction from the
'sne-dimensional case.' Real and comniugate symmetric Irreducible Polynomials
tact.)rs can occur that di) not cointribute to the phase
imbigiity. and for simplv shaped apertures and sup- A polynomial of total degree .V in twoi variables will

,nr e .meriz Iht sxnect -he .isvnmprtie zeros to retlect require N 1 1 N - 2! ,,ietfic:ents ind thuA this,
I ~5i~i~fi5 itt~~iit numbher if i i i::.- 1-trset :tt:iiei' It ve
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have .VN2 data Doints. then Ae may assume that the -- ,,, .,.- " - - - '
maximum degree in each variable is .\ - I: thus the .\"- ' ' "9 L/i'. '  

"--
coefficients that are associated with this polynomial. ~-
We wish to ensure irreducibility of this polynomial.
The example given by Bruck and SodinA4 in which a . "; ; " 

' .
reference point is placed to one side of a one-dimen- , 'sional object array of points ensures irreducibility but - .k'- -- "

is of limited interest. b .
If the object support is not known, then the simplest - '

step is to assume a constraint for irreducibility outside " -"' - '
a simply shaped region within which the object is known . . , .A e " , ,-b " -

to be confined. lfthe object support is known. a more . "
appropriate and specific constraint can be introduced. _ -

and. in addition, it may be possible to model the object a,
by a polynomial of higher degree and thus achieve I
higher resolution. The following is a sufficient condi-
tion for irreducibility of F(z i, z,), z complex."" /. " .

Eisenstein's Criterion.
5  Consider F(zl, z,) as a 1< "t3 vlk

polynomial in :t, i.e.. " ' -- .. -

F(zlz,) = ao(Z2) + a1 (:2)zl . av_ -I lZ2)Z-

Thus the coefficients are polvnomials in z2. If there % -

a,. a I . a,-, but not a.,;, and if o-(-) does not di- " -- ,
vide a), then Flz,) is irreducible. In C the only
prime is of the form z, + b. where b is complex. 0 " '

Consider the general form of a polynomial in two A/;//ltlJ I ;
variables having maximum powers J and K in zI and X-

C1
J K

Flz1. z,) = ' hfkjk)z;z.
k._  

Fig.2. The test object a, is a 64 x 64 element array with the
0 0 magnitude of the brightest point normalized to one and point

The coefficients of the polynomial are samples of the B of Fig. I arbitrarily set to one. The result, after 250 itera-
object.

14 
We can construct an irreducible polynomial tions. of applying the Fienup algorithm directly to the Fourier

in. for example, the following way. Assume that the modulus and support of',a is shown in bi. Although certain
general features are recognizacie.thimghaanos pregion containing the object support is a rectangle de- genera- features onia the image has a noisy" ap-

r c pearance which is only lihtly red uced by" continued itera-
fined by 0 - 1 and 1 k K. A single reference tion. Including point A of Fig. I er.sures a unique solution,
point at iJ. 0) ensures irreducibility, provided that the and the Fienuo algorithm converges rapidly'. Pictures Ic) and
point at t0. I) is nonzero. The simplest prime, z2, di- dI how the results after 20 iterations for A = 1(," and A = 10,
vides all coefficients except that of the z 4 term. nd z 2 respectively.
doe not divide the -, '1 coefficient.

Figure I shows the location of the reference points A
and B at J. O and 0. I1. respectively. Points A and B
shouid be nonzero. Clearlv. if the object support is point on its per'meter as B ar, c:hen seiect an optimum
.nown. it ma- oe possibie in speciai cases to choose a location for A chosen by rotating the support and

redefining the axes irreducibiiity is maintained under
any linear transformation.

The referetice function introduced can be arbitrarily
close to the object support, provided tiuot the Eisenstein
criterion is satisfied. The method ha.. similarities to

--off-axis holography, a holographic reconstruction failing
because of the overlap of the autocorrelation and

N ~ cross-correlation terms. The object support may be
-:b ct such that this is naturally satisfied.

""N x .; Implementation of Phase-Retrieval Methods on
"- Irreducible Polynomials

Having shown that our object model generates an irre-
ducible polynomial of degree compatible with the

Fig. I. Sufficient conditions for a two-dimensional array to number of data points available, we still have to find a
he irreducible are satistied when the object is contained within way of recovering the unique phase from the modulus
the shaded support and points A and B are nonzero, data. It has yet to be proved that. when oniy one pns.

A-
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sjble phase function exists, the Fienup algorithm. if it ditonal constraints. Feinup's algorithm could reach ail
converzes. does converge to the correct phase. Never- solutions that are band limited and have a given mod-
theiess. we have compared obec, reconstructions bv ulus- thuis. if the number of solutions is zuaranteed "o
usins this algorithm with and without the reference be one. the method will work.
points ofA and B. These are illustrated in Fig. 2. The
results are encouraging. showing a rapid convergence This work was supported by the U.S. Air Force Office
with the reference points when there is no sign of con- Tic res und e ran AFor O 003
vergence to the correct solution without them. The
computer simulations indicate that, when a unique
phase exists, there is no advantage in imposing the References
oositivitv constraint (when relevanti other than to
speed up the rate of convergence. I. R. E. Burge or ai. Proc. R. Soc. London Ser. A 350, 191-

212 1976,.
Conclusions 2. 1. Manoiiksakis. J. Math. Phys. ,to be pubiishedt.

3. M. H. Haves and J. H. McClellan. Proc. IEEE 70. !97-198
It has been argued that despite the likelihood of irre- 19821.
ducjbilitv for functions of more than one variable, the 4. R_ H. T. Bates. .J. Opt. Soc. Am. tto be published).
lack of consistent success of phase-retrieval algorithms .3. B. L. McGlamery. RADC Tech. Rep. TR-61-237, Romel c i s sAir Deveiopment Center. Griffis AFB. N.Y.. 9811.
suggests that irreducibility should be guaranteed be- 3. P. van Toorn. A. H. Greenawav. and A. N.J. Huiser toforehand. In addition, because of the inevitable limi- be published.
tation of discrete data, a model is adopted of a finite- M. Nieto-Vesperinas. Optik 56. 376-:384 19801.
degree irreducible polynomial consistent with the S. M. A. Fiddy and T. J. HaIl. .. Opt. Soc. Am. 71, 1406-1407
available data. The Eisenstein criterion provides one 19511.
particular sufficient condition for irreducibility; nec- 9. H. A. Ferwerda. AIP Conf. Proc. 65. 402-411 1980.
essary conditions do not appear to exist, but other suf- 10. .. R. Fienup. Opt. Lett. 3.27-29 11973).
ficient conditions may'exist. 1 1. TBP. Fienup. T. R. Crimmins. and W. Holst-nski. J. Opt.

Having imposed the irreducibility criterion by adding Soc. Am. 72, "10-624 '1982).
nonzero reference points to the object., we found that the 12. I. J. E. Goiay. .. Opt. Soc. Am. 61. 272-273 1971).

n r3. -J. R. Fienup. Appi. Opt. 21. 2758-2769 11982).
Fienup algorithm quickly converged to zhe correct 14. Yu. '. Brick and L. C. Sodin. Opt. Commun. 30,304-308
missing phase. This therefore offers a possible means t1979).
for analyzing the Fienup method to determine necessary 1.5. B. L. van der Waerden. Algebra IUngar, New York. 1970),
conditions for its unique convergence. An analysis in Vol. 1. p. 94.
terms of alternating orthogonal projections onto the 16 D.C. Youia. Rep. POLY-MRI-.1420-81 Pol.technic In-
boundaries of convex sets suggests that. without ad- atitute of New York. New York, 1981).

- -- A-



REF. 8

Reprinted from Optics Letters. Vol. S. page 608. December. 1983
Copyright 1|9S3 by the Optical Society of America and reprinted by permission o" the copyright owner.

Detection of gratings hidden by diffusers using
photon-correlation techniques

J. C. Dainty and D. Newman

Department of Physics and AstronomY. Uni'ersatv oi Rochester. Rochester .r: ',orK 1462
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Photon-correiation experiments have verified the theoretical prediction of Bakes et ak :hat a Dnase gratine nidden
by a diffuser can be detected by correlation measurements. We have aaditionaily demonstrated that a simper
method of detecting the presence of the grating, valid for arbitrarily fine diffusers, is to me sure the temporal auto.
correlation of the intensity of the scattered field at a single point.

In a series of recent theoretical papers.i- '
O Baltes and correlation function of parameter equal to i,. If , Z

co-workers have shown that the presence of a phase ,. it can be shown that the correlation function of the
gr-ing placed behind a diffuser can be detected by complex ampiitude transmittance of the diffuser is also
correlation icoherence) measurements of the scattered approximately Gaussian. with width equal to L tRef.
radiation, even when a simple intensity measurement 13):
does not reveal the grating. eXpji[0Q,_- - OiA)]) - expl-;c, (4)

In this Letter, we present measurements of the
strengths of the correlation peaks as a function of the where
diffuser and grating parameters obtained !Ising pho- 2. _ L),
ton-correlation techniques; our results confirm Baites's L = 1; , n 1 )
theorv.

1 6 We also report measurements of temporal-
correiation functions in which the presence of the X is the wavelength 633 nm,. and n is the refractive
grating manifests itself as a cosinusoidal modulation, index of the photoresist i -- 167). In our experiments,

Measurements are made in the far field of the grat- L = 1.3. 2.5, 3.3, 6.4, 7.1, and 10.3 jam.
ing-diffuser plane (see Fig. 1). In the absence of the For computational simplicity we expand the grating
grating, the diffuser alcne would give a broad diffraction transmission T(c) in a discrete Fourier series:
cloud of width inversely. proportional to the correlation
length L: the sinusoidal phase grating in the absence of T(c) expi a sin ,

.he diffuser would give a series of diffraction orders with g.expii2-r.n ,/b). (6)
an angular separation inversely proportional to the = n='--6
grating period h. With both grating and diffuser :vhere ii =t],ai, -he Bessei. functioncof the first k-ind
present, the diffraction pattern consists of a series of ohere n n - rgume Bf
coherently superposed diffraction clouds centered at of order n and argument a.Tp co rrela ....on x_,) of "he complex amplitude
each diffraction order of the grating. a hus, r. in Figs. iThorr..aton e.a t

and 2. If the ratio L b is smaii eruuh, L 5 < . the far field is given 6y. ignorinz the unimportant

then the average intensity distribution does not reveal phase-factor and scaling constants.
the presence of the grating, as shown in Fig. 2(c,. f ( L

Using one-dimensional notation, we model the com- f ,*
plex amplitude in the scattering plane as the product X . x

U) = P)el"'T(l. i) e Xp - iR i - d,:d:,. 7)

where P(,) is a real pupil function., o.i is the random
phase that is due to the diffuser, and T(,:) is the trans-
mission function of the phase grating. In our case. f/ cib,

Plc) = Io)j'2eXp-_C'4o- 12) rsdo

where a is the beam width, and iose . . -

T(,) = exp~i a sini2t-. b ,]. b3 . _-____-,_.

where ty is the optical depth and b is the period of the " - cQRaa70P!
grating. In our experiments. a = 0.33 mm. a 0.85. and se,

6 .5.1 and 9.2 ;Am. -. A
The diffusers were made in photoresist b% multiple - T.

exposure to Gaussian speckle patterns;1.:
2
: this pro- -_,,_--__

ctes .i surface he%:nt with Ji ;.ttl1sl.ln prItiiilitv
i• t lriuti, n ,i standard e T _ ; r.. !i ti A .1 n .l i 11 j. a. Ex i.ri n tai arr,..temt-n,..

0 146.9592. 12 Iio.-3.: t l) 1) c 9, Opticai Society ,t America

Ar
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fraction orders. The angular width of the correlation
peaks is equal to ika- or a speckle diameter: note that
these peaks are usually very narrow comnared with the
intensity peaks. 4ca P << kL)--.

(a) .Measurements of the peaks of the normalized in-
.: "tensitv cross-correiation were made for the antisvm-
. .. ' " metric scan i, \, b i. using standard photon-corre-

lation equipment described eisewhere. :
6 The diffuser

was rigidly translated across the illuminated region, and
the spatial correiation at the two angies was estimated

i. .from measurements of the :emporal cross-correiation
: "at zero time lag. The anguiar width of the correlation
M'. Iblpeaks does equal iko 1-1. as found lapproximateiy by

Fig. 2. Theoretical average Jauch and Baltes-: these results are not repeated here.

intensity in the far field of The experimental values of the peak of the normalized

phase grating-diffuser cor- intensity croi -correiation are plotted in Fig. 3 for eight
binations: a) L~b = 10. b different values of the ratio L b. where L is the corre-

L,b = 0.50. and ic) L,b = lation length of the compiex amplitude transmission of
0.33. tL is the lie correia- the diffuser and b is the grating period: the theoretical
tion length of the complex curve [Eqs. t91-i 11)) is also plotted in Fig. 3.
amplitude transmittance of The agreement between theory and experiment in
the diffuser and b is the pe- Fig. 3 is excellent. It should be noted that. for values
riod of the sinusoidai phase of L b < 0.33. the average intensity distribution as
grating)- shown in Fig. 2 does not reveal the presence of the

grating; however, the intensity correlation still has a
measurable value for Lb Z 0.15. so there is a small but

and the normalized correlation is defined bv important range of values 0.1.3 :. L b !S 0.33 where the
Fix,. x) grating is revealed by correlation measurements but not

- (x X2) = 8) x)F'x.,, x 2)]i
'  SI by average intensity measurements.

As our experimental apparatus measures temporal
Defining the sum and difference coordinates in the far cross-correlations of dynamic speckle intensities, we
field.x = xi + x 2)i2and _.x = ,x - xp.and thean- shal expand the previous i r = 0) theory- and allow the
guiar sum and difference coordinates, s = xiR = (sin 01 diffuser to have a linear velocity v = v+ u, where
+ sin 0,)/2 and a = Ax/R = sin 8, - sin 0.,, we find that and are unit vectors,
a straightforward calculation yields

~ g~,,exp {~ k~a2 [~ - (m -n),\ 12 exp { 2L2[ - 2 'r~nX2

.g,,,-exp [ s b - ). I{ :g'exp K- b - : s .9

where k = 2rX.s + q'2 = sin 61. s - al2 = sin 
6
1, and

we have nade use of the fact that a >> in evaluating , = .2 - -'-. "1 - :'..
the denominator. The only difference here is that the spatiotemporal

Photon-correlation measurements estimate the correlation of the complex amplitude transmission of
normalized corrclation, defined by the diffuser is given by

Clrti. x.,= !x, [Ix')) -1. ,10) (exp(it,',(t). 7 t)] - :(l2it + r). r t + J]))
( I x ) h .:D*ex\p[-(; - - zr ',r

2

Since a >> L. the far-field speckle has Gaussian statis- [ 1 - 1 -r ,7 cr2/2L"]. (12)
tics. so the intensity and amplitude correlations are
simpiy related' 5 : where ah Z X. L is defined by Eq. 15). and time sta-

x , tionarity is assumed. The expression for the amplitude
CIxIX) = .cross-correlatior evaluated at coordinates is. 0. Y,.0.

Although the sums in Eq. 19) appear quite formi- becomes

dable. it turns out that. for gs, = .J,-. L ()-Q5. only Rei is,.. 1,.1. r ' expi - -2 Sa-)
the terms 0. 1, and 2 are significant. The averagen
intensity FIx,. x) = r(s = sin 6,, a = 0) shows broad X .cos -- r -- _ n +

peaks centered on the grating diffraction orders: the ., b sin 2
angular width of these peaks is equal to tkL)-t see Fig. X xn t a - In - m 21
21. The amplitude cross-correlation in the so-called ' - b
antisymmetric* scan.' F x,. -x, a Fa = 0.d, = ' i
[n I,). shows irtarp ,:rraiation peaks whenever Ain < Ax;) -X*)-.. - _ 4

S ..- t.\, . i.e.. whenever me correiates pairs ,t jif- 1



61q OPTICS LE77ERS Vol, 8, No. 12 December 1383

I.M r  ment of the intensity temrporal-correlation function.
.Wi/ '( Figure 4 shows an example of such a measurement,

. which is in excellent agreement with theory.

. o l / The physical origin of the modulation can be under-
8 / stood by considering a diffuser correlation cell. of linear

dimension L. moving across the phase grating of period
"a /b. For L << b. each diffuser element has added to it a

.30 periodic phase component. which gives rise in the far
field to a strong cosinusoidal modulation of period biv.

. I ,As L increases, the diffuser element ,till has a periodic
0.00 . .0 W .8s .1 .0 0 component added to it. but the strength of the compo-

EX• ..TWNT L/b nent is now smaller since it is the value of the phase of
- . ,-cthe grating averaged over a distance L: thus the modu-

Fig. 3. Peak values of the intensity cross-correlation mea- lation disappears as Lib - .
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7. Stellar Speckle Interferometry

J. C. DAorTy

With 19 Figure

The use of optical interferometry to determine the spatial structure of
astronomical objects was first suggested by FizEAu in 1868 [7.1]. Stellar
interferometers measure, in modem terminology, the spatial coherence or
light incident upon the Earth, and the object intensity (or some parame-
ter such as its diameter) is calculated using the van Cittert-Zernike
theorem [7.2]. FIzEAu's suggestion led to the development of specialized
long baseline interferometers-, Mic.EoN's stellar interferometer [7.3, 4]
directly applied Fizeau's method (amplitude interferometry), whilst the
intensity interferometer of HA."U y BlowN and Twtss [7.5] enabled the
squared modulus of the spatial coherence function to be measured for
thermal sources.

Until recently, single optical telescopes were used in a conventional
(non-interferometric) way, their spatial resolution being limited to ap-
proximately 170 * due to the presence of atmospheric turbulence or
"seeing". In 1970, L~AByRI invented the technique of stellar speckle
interferometry [7.6], in which diffraction-limited resolution is obtained
from a large single telescope despite the seeing. The diffraction-limited
angular resolution Ja of a telescope of diameter D operating at wave-
length , is conveniently expressed by the Rayleigh criterion,

Ja- 1.22, (7.1)

yielding approximately 07025 at A =400 ran for a 4 m telescope. The first
results by LBaERmm and collaborators were published in 1972 [7.7] and
since then approximately 250 papers on speckle interferometry have been
published [7.8].

Labeyrie's important contnbution ,vas to recognize that the speckles
formed at the focus of a large telescope have an angular size determined
by diffraction, ie. their smallest dimension is given by (7.1). Diffraction-
limited information about an astronomical object can therefore be
extracted from short-exposure, narrow-band images by an appropriate
method of data reduction.

One amc seconLd.
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This chapter is divided into six sections. The basic pnnciples are
outlined in non-mathematical terms in Sect. 7.1, and this is followed by a
detailed mathematical discussion of the technique in Sect. 7.2. In
astronomy, the objects under observation are often faint and only a
limited observing time is available, so that the question of signal-to-noise
ratio is very important; this is evaluated in Sect 7.2. In Sect. 7.4 we
discuss the problem of finding images (or maps) of astronomical objects
using speckle data. This is an area of considerable activity at the moment
both by theoreticians and observers. The equipment required to imple-

Sment speckle.interferometry is described in Sect. 7.5; this section includes
a discussion of the technique of one-dimensional infra-red speckle
interferometry which has proved so fruitful in recent years. Finally, we
conclude with a brief summary of the astronomical results produced by
speckle interferometry-these range from measurements of asteroids to
quasars.

Certain topics have been deliberately omitted or are considered only
very briefly. Other methods of interferometry, such as rotation.shearing
interferometry [7.9] and long baseline interferometry [7.10, 15], are not
considered. The discussion in Sect. 7.4 of the phase problem is incomplete
due partly to the uncertainty in the field at the moment; a more complete
exposition of this subject may be found in the review paper by BATES
[7.11] which is complementary in content to this chapter. Earlier reviews
of stellar interferometry may be found in [7.12-15]; some useful
references are also contained in two conference proceedings [7.16, 17).

7.1 Basic Principles

Figure 7.1 shows highly magnified images of an unresolvable ("point")
and a resolved star taken using a large telescope with an exposure time of
approximately 10- s through a filter of bandwidth 10 am. In the case of
the point source (upper row), the image has a speckle-like structure and it
is found that, as with conventional laser speckle patterns, the minimum
speckle "size" is of the same order of magnitude as the Airy disc of the
telescope. A long-exposure image is simply the sum of many short-
exposure ones, each with a speckle structure that is different in detail, and
is therefore a smooth intensity distribution whose diameter is typically
1'0 in good seeing. Long-exposure images of the point source and
resolved star of Fia7 1 ,.,,i4 ,.,.... ' -- :,! y, : .--- -

minimum speckle size, on the other hand, is approximately 0.'025 for a
4 m telescope at a mean wavelength of 400 nm; by extracting correctly the
information in short-exposure images, it is possible to observe detail as

A
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Fil. 7.. Short eaposure phowpoaphs of an unresolved point soure (upper row) and a
resolved suit. -Oionis. (lower rowl taken on a 4 sn-ciass telescope. The exposure utme and
fiter bwndwlth are 10-Is and 1Out. respectively (cortesy of B. L Morpn and I. J.
Scaddn. Imperial College. London)

small as the limit imposed by diffraction and not be limited to the 170
resolution of conventional images.

A laboratory simulation illustrating the basic method is shown in
Fig. 7.2 for an unresolved star, binary stars of two separations, and a
resolved star (shown as a uniformly illuminated disc). A large number of
short-exposure records are taken, each through a different realization of
the atmosphere, typical examples being shown in row B. For a binary
star, each component produces an identical speckle pattern (assuming

I...... ,I- , r hn r ,,ntsn nnie) and a "double-saeckle" effect
may be visible in each short-exposure image in favourable circumstances.
The optical diffraction pattern, or squared modulus of the Fourier
transform, of a typical short-exposure record is shown in row C for each
object The signal-to-noise ratio is low for a single record and may be
improved by adding many such diffraction patterns (row D). The unre-
solved object has a diffraction halo of relatively large spatial extent, the
binaries gve fringes of a period inversely proportional to their sepa-
ration, and the resolved object gives a diffraction halo whose diameter is
inversely proportional to the diameter of the object. By taking a further

&
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Fourier transform of each ensemble-average diffraction pattern we
obtain the average spatial (or angular) autocorrelation of the diffraction-
limited images of each object (row E).

The term "speckle interferometry" was adopted by GEZARI et al.
[7.7). The interferometer is, in fact, the telescope--light from all parts of
the pupil propagates to the image plane where it interferes to become a
speckle pattern. In other forms of stellar interferometry, the light in the
pupil is combined in a different way, for example, using a rotation-
shearing interferometer. The beauty of the speckle technique is that the
interferometer (i.e., the telescope) is already constructed to the required
tolerances.

7.2 The Theory of Speckle Interferometry

7.2.1 Outine of Theory

For each short-exposure record, the usual quasi-monochromatic, isopla-
natic imaging equation applies, provided that the angular extent of the
object is not too large' :

0c,, ) fl )" 0(,,#') P(m,-Y, 0- ')da'df'

or, in notation,

lA4 0) 004 0) e Mat, 0), (7.2)

where f(a, 0) is the instantaneous image intensity as a function of angle

(a,#), 0(a, ) is the object intensity, P(n, ) is the instantaneous point
spread function of the atmosphere/telescope system normalized to unit
volume, and 8 denotes the convolution integral

As we demonstrated in Sect. 7.1, the analysis of this data may be
carried out in two equivalent ways. In the angular, or spatial, domain, the
ensemble averaged angular autocorrelation function of the image is
found; this is defined as

r / i ' ) I .R Idddff\

or, in notation,
CAO,) 0( ) (,)(7.3)

Throughout this review, the object and image plane coordinates are taken to be angles
(a, , the coordinates in the Fourier transform plane being angular frequencies
(arcsec-

fA
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where - denotes angular autocorrelation. Combining 17.2 and 3) yields
the following relationship between object and image autocorrelation
functions.

Cr(a, 0) - Co(1,) OW(M 0~,) , P04,//)> , (7.4)

where Co(o,/) is the angular autocorrelation function of the object
intensity. Note that (7.4) for the object and image autocorrelation
functions is similar in form to (7.2) for object and image intensities, but
with an impulse response equal to <Pz7 f) - P(. 0)>.

In the angular (or spatial) frequency domain, the average squared
modulus of the Fourier transform of the image intensity is found: this is
correctly referred to as the average energy spectrum,'

O(u, v) a O(i(U. v)12>, (7.5)

where

i(u, v)a Jf I(J f)exp(- 2xi(ua + vi#)edadf. (7.6)

Combining (7.2, 3 and 6) yields the following simple relationship between
the energy spectrum of the image 0,(u, v) and that of the object 0 (u, 0:

01(u. V) =- o(U, V)' -,(u, V). (7.7)

where

Y(u, V) a <I T(u, v)l2 >,

and 7Tu, v), the instantaneous transfer function, is equal to the Fourier
transform of the point spread function,

T(u. v) = P(a, )expC- 2m(ua + vf#)]dad#. (7.8)

Because of the similarity between (7.7) and the Fourier-space isopla-
natic imaging equation (in which image frequency components are equal
to object frequency comp6nents multiplied by an optical transfer func-
tion [7.19]), the quantity Y-(u, v) is referred to as the transfer function for
speckle interferometry or speckle transfer function. Equations (7.4 and 7)
in the real (angular) and Fourier (angular frequency) domains re-

The evwrgy specmum of a funcuon equals the squared modulus of its Fourer transform. If
the function is a realinton of a square-intepiable non-stauonary random process, an
esembla..*raged eoergy spectrm can be defined as isn 17.n(. A realizanon of a stauonary
random procems does not possess a Fourier trantsform. but a power spect mm can be
defined in terms of a generalized Fourer transform 7, 18].

,.
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spectvely are completely equivalent; (7.7) is simply obtained by taking
the Fourier transform of both sides of (7.4).

The conventional ("long-exposure") image intensity is found from
(7.2) by ensemble averaging:

(1(a, 8)) -O)( P($)>, (7.9)
where ( ,#)> is the average point spread function of the atmo-
spheretelescope system. In Fourier space. 17.9) becomes

(i, )> -Ou. v)) < T v)), 7.1)

where o(u, v) is the Fourier transform of the object intensity, and K T7u. ))
is the average, or long-exposure, transfer function.

Comparing conventional long-exposure imaging, (7.10), to speckle
interferometry, (7.7), it is clear that the resolution of conventional
imaging is governed by the form of the average transfer function
( T(u. O)), whereas in speckle interferometry the relevant transfer function
is -7(u. v)a(1T(u, ul 2 >. In the following sections we shall show that the
latter function retains high angular-frequency information that is lost in
conventional imaging. However, it must be remembered that .7(u, v) is a
transfer function for energy spectra, whereas T(u, v)> is a transfer
function for Fourier components; the loss of Fourier phase information
in speckle interferometry is a severe limitation to its usefulness and
possible methods of retrieving the Fourier phase will be discussed in
Sec 7.4.

7.2.2 The Loqg-Exposure Transfer Function

To find the optical transfer function of a system, we must consider the
imaging of a quasi-monochromatic point source as in Fig. 7.3. For an
isoplanatic, incoherent imaging system the optical transfer function
T4. u) is equal to the normalized spatial autocorrelation of the pupilfunction // )

? ( )H(? + ,,#+;v)d,!dr

T7u.v)- (7.1)
IS. IH(,L,')I ,d, at

where (u, ) are angular frequency coordinates. ( , t) are distance coor-
dinates in the pupil and , is the mean wavelength [7.20]. The pupil
function H(R, 7 ) is the complex amplitude in the exit pupil, relative to a
reference sphere centered on the Gaussian focus, due to a point source

i
I
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Instantaneous

Wavefront A(C,)
Insantaneous

Quasi- monochromatic
Point Source

Turbulent
Medium TeleScope

Pupil Ho(. 17)

Fig 7.3. The formauon of an nstantaneoua imap of a oiant source through the atmosphere

and in the case of propagation through the turbulent atmosphere may be
written as

H( , 2) - A(4, q)Ho(4, ,), (7.12)

where A( , if) is the complex amplitude of light from a point source that
has propagated through the atmosphere and H,(4, ?) is the pupil function
of the optical system alone.

Substitution of (7.12) into (7.11) gives

A ) +A( , ) z uHo( , q)H~d 0 v

"- (7.1L3)

The long-exposure or average transfer function is found by averaging
(7.13). The lower line is simply the intensity of light integrated over the
telescope pupil and is effectively constant for a large telescope and/or
weak scintillation. We also assume that 4(4, qI) is a (wide-sense) stationary
process [i.e. its mean and autocorrelation function in (7.13) are inde-
pendent of the c coordinates], so that the expression for the long-
exposure transfer function becomes C7.21]

<(Tu u) = ,(U. u) T(u. V), (7.14)

where T(u, v) is the atmospheric or "seeing'" transfer function.

T,(u. V) (, <i)A(4 +Au.n)+A> (7.15)
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and T(u, v) is the optical transfer function of the telescope alone,

T0(u, v)- (: iH0 ( q)I
2d~d'7 (7.16)

Thus the long-exposure transfer function is equal to the product of the
transfer functions of the atmosphere and telescope.

A detailed discussion of the atmospheric transfer function and other
relevant properties of turbulence may be found in [7.22-25], particularly
in the comprehensive review by RODDIER [7.24]. For a Kolmogorov
spectrum of turbulence, the average transfer function is rotationally
symmetric and is given by

T,(w)= exp [-3.44 ( j) 53) , (7.17)

where w - V17+ 2 and the parameter ro , first defined by FRIED [7.22], is
equal to the diameter of the diffraction-limited telescope whose Airy disc
has the same area as the seeing disc. The parameter r. plays an important
role in both long-exposure imaging and speckle interferometry; it can be
shown that [7.24]

r. , i 6"(cosy) 315 . (7.18)

where 7 is the zenith angle. Typical values of r, lie in the range 5 to 20cm
at a good observing site in the visible range; since an r. value of 10cm at

= 500nm is equivalent to ro=3.6m at , = l0gm, it follows that a 4m
class telescope is severely seeing-limited in the visible but essentially
diffraction-limited at 10 Wm.

The angular "diameter" of the seeing disc, or seeing angle cu, is defined
by

Ca -- (7.19)
ro

and is therefore proportional to . "i. At . 500 nm and r0 = 0 cm. the
seeing disc has a diameter of approximately 5 x 10" rad or C0.

Measurements of the long-exposure transfer function and the param-
eter ro have been reported by DAjn'rY and ScADDA, 4 [7.26], RODDIER
[7.27], and BROWN and SCADDAN [7.28] and there is good agreement
with (7.17).
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7.23 The Speckle Trsfer Function

The transfer function of speckle interferometry, X(uv)a(IT(uv)I2 ,
relates the average energy spectrum of the image to that of the object.
Using (7.13), we can write IT(u. v)12 as (T(u,v)I2 ='(u, v)11, where

and

I JA( ,,It)Jl IHo( , 1)1 d .J (7.20)

As before, A( , ?) is assumed to be a stationary random process with
weak scintillation; for convenience we define 1A12> =I and the pupil
area ,Y,

Y S IHo[ ,,*I)1-d d 7 (7.21)

(this is the true pupil area for an unapodized. or clear, pupil).
With the substitution ,' 2- , and W =12- 1 1, (7.20) yields the

following expression for the speckle transfer function:

J'u f) f,- ; JV(u. v; ', I'),Y~u, v ; )I, ')d4' dj' ,

- Zo

where .A is a fourth-order moment,

-.41 I + , / + l'+ - v)> (7.22)

and

•HON, + r, + ql)Ho( , + ?? +' + :.v)d , d",

Clearly, the quantity . characterizes the atmospheric contribution and
. the telescope contribution to the speckle transfer function.

Further simplification of (7.22) requires that an assumption about the
joint probability distribution of the process A( , ,) be made. The most

A-II I
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satisfactory distribution is the log normal, in which the log modulus and
phase each have a Gaussian probability density. Kom.F [7.29] evaluated
the speckle transfer function using this model and results will be shown
below; however, neither this model or the zero-scintillation versions of it
[7.24] have a simple analytical solution and require extensive numerical
calculations.

In order to illustrate in a qualitative way the form of the speckle
transfer function, we shall assume that A( , ,t) is a complex Gaussian
process [7.30]. This is a poor assumption in good seeing, although it
improves as the seeing deteriorates; this assumption also violates the
weak scintillation requirement for normalization. For a complex
Gaussian process, the fourth-order moment of (7.22) reduces to a product
of second-order moments

.<A( ,%(, + ', , ?7A, P ' +:u > .

• <A*( , +£. v)A( , ' u +1' ,v)>,

which, when substituted into (7.22) yields

Y J(u. v; ", Fr')d 'dtj'. (7.23)

Now I T '/,)g
2 is of width of order ro, ,i and 'Y is essentially constant

for such values of -', '. provided that V,< +v<iD -ro)/li. The second
term of (7.23) therefore reduces to

Y T,('A., ',,,.)I0d'd' x Y(u, v; 0, 0), (7.24)

except for VuTv>(D-r,)/.
The first integral in (7.24) can be evaluated using (7.17) to give

0.109niro; the quantity A(u, v; 0, 0) is simply

jru, v;O0,0)= :f Ho(4, Yy)l Hoi4, + ., '.vld"d, ,

which, when multiplied by Y - is the diffraction-limited optical transfer
function To(uv) for an unapodized, or clear, pupil; and finally, the
remaining Y- I equals 4/D 2 .

far
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Thus the expression for the speckle transfer function reduces to

J.'( u, v) = < ju. v)>11 + 0.435(ro/D)z To(uv), (7.25)

or, defining the number of speckles as

\'O1 (7.26)

(u, v)t1(T(u, v) + I T(u, v).-7-

'Sp

In both equauons it is assumed that V-77J"7'5(D-ro)/.
The essential feature of the speckle transfer function, (7.25 or 26), is

that there is a term proportional to the diffraction-limited optical transfer
function, that extends almost up to the diffraction-limited cut-off D/.h;
expressions (7.25 and 26) indicate that this result is independent of
telescope aberrations [7.30], although there is, in fact, a weak dependence
on aberrations to be discussed in Sect. 7.24. With Dz4m and ro -0.I to.

0/€,, 10 0/1r -'00

mode.I m '

%o Io10 ~O 0.'1 0.5 0.9+0 .099 0.001 0.01 0.1 0-5 0.9 0.9%

- - 09 w/0flfO o*1

-Fig. 7A (a) Compaison of the

I specle transfer function predicted
-z 1 by the log normal model wit terms

M1) and (2) of l7.26) for the complex
Gaussian modeL for D/r-0 and
100 [7.491. kb) Comparison of the

-3- speckle transfer function predicted
by the log normal model with ex-
perimental results [7.321

0 ' 0 . ..

S
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the number of speckles N,, is approximately 3.7 x 101, indicating that the
diffraction-limited information in the image may be carried with a low
signal-to-noise ratio. However, the normalization of (7.25, 26) to unity at
zero spatial frequency gives a misleading impression of the signal-to-
noise ratio which is best evaluated by other methods (Sect. 7.3).

Since (7.25, 26) are based on the assumption that A(4, t) is a complex
Gaussian process, they give only the qualitative behaviour of the transfer
function. The speckle transfer function can be calculated using the log
normal model and these results are compared to (7.26) in Fig. 7.4a for
D/r0 = 10 and 100 [7.49]; the main differences lie in the region between
the low, and high-frequency terms. In fact, at low spatial frequencies, the
correct asymptotic form of the speckle transfer function is j< T>s,(, where
(Ts is the so called "short-exposure" average [7.22, 29] (ie., the
average when each point image is re-centered). Careful measurements by
AntE et al. (7.313 and CH.rw et al. C7.32] are in excellent agreement with
the log normal model, particularly if the effect of the central obstruction
and the (small) effect of defocus are allowed for. Fig. 7.4b shows the result
of a measurement in the infra-red.

7.2.4 Effect of Aberradon

Telescope aberrations have two potential effects on the speckle transfer
function, If they are very severe, optical-path differences greater than the
coherence length of the light may be introduced and this would lead to a
strong attenuation of the transfer function. A proper analysis of this effect

requires a detailed consideration of temporally partially coherent imag-
ing; this is not carried out here since the effects in normal circumstances
are small, as the following analysis shows.

Consider the simplest aberration--defocus---of magnitude m waves at
the edge of the pupil; the longitudinal and angular transverse ray
aberrations Jz and Ja, respectively, are given by

Bmzfz

and (7.27)
8mn

Under most observing conditions, focus can be established to a tolerance
Ja of less than 1.0, giving a maximum value of m of approximately 5i for
a 4 m telescope. The coherence length 1, of light of bandwidth 4.1 is given

i

kI
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approximately by

, "- -- (7.28)

and with typical bandwidths (JA 2Onm, i-500 nm) it is clear that 1,
> m;- In practice, aberrations only introduce path differencns greater
than the coherence length if the bandwidth is large or the aberrations are
severe

Aberrations also affect the shape of the speckle transfer function in
the quasi-monochromatic case; their effect reduces as the ratio D!ro
increases and disappear in the limit D/ro-o. The effect of several
aberrations was investigated by DAINTY [7.33] using the complex
Gaussian model for the atmospheric turbulence. More precise calcu-
lations for defocus and astigmatism were made by RODDimt et al. £7.34]
using the log normal model and were compared to the measurements of
KARO and Sc, NImtmAN C7.35]. These results are shown in Fig. 7.5: it
should be emphasized that the defocus in this case was made artifically
large to illustrate the effect, with m a 6.4A corresponding to an angular
transverse ray aberration (of extremal rays) of ja -373.

For aberrations other than defocus, intuitive reasoning based on the
approximations necessary to obtain (7.25, 26) suggests that the effect of
aberrations is small if the seeing disc is larger than the point spread
function due to telescope aberrations alone. Thus, a telescope of poor
optical quality achieves diftacrion-limited angular resolution if suf-
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ficiently severe atmospheric turbulence (real or artificially induced) is
present [7.30]. Unfortunately, poor seeing (small ro) also results in a low
signal-to-noise ratio (Sect. 7.3).

7.2.5 Effect of Expomwr Time

In practice, each image is the result of a finite exposure time At, which
always has the effect of attenuating the speckle transfer function. Let the
instantaneous point spread function at time t be denoted Pfa. #, t) and the
instantaneous transfer function be T(u.u, ). The speckle transfer function
for instantaneous exposures (At-O) is defined by

9 ) IT( )IT(U.v, )2>, (7.29)

whereas for an exposure time ,t it is equal to

I Jr
,( u, 0)= -T 2 0J f< T( v, 0 (uv, ) >dt dt (7.30)

The term <. > in (7.30) is called the temporal cross-energy spectrum and
plays an important role in time-integration effects. Assuming temporal
stationarity of the process Tu, v, r), (7.30) may also be written

V) 7- (- IT) <T7(14 v, e)T~u,v. t+ r)>dr. (7.31)• ,t dc( 7, t/

The finite exposure time speckle transfer function. g',,(u, v), is always less
than (or equal to) the instantaneous transfer function .4(u, v), as the
following analysis shows £7.363. The Schwartz inequality implies that

so that, using (7.31),

i- fP I t

At -4(t( ~ .t) 2 d

i<T.u, U, 0,'> 6,(u, V),

X,,(U, V4 X3(u, V). (7.32)
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This is a general result which is independent of the detailed nature of
the turbulence. The magnitude of the attenuation of Yr(u, v) due to an
exposure time it depends, from an experimental point of view, on the
form of the temporal cross-energy spectrum (T(u, v, t)T7u. v, t+ r)>; only
qualitative estimates of this function have been reported [7.37].

The temporal cross-energy spectrum is equal to the Fourier transform
of the spatially averaged space-time' intensity correlation function.

(Tu, v, )Tu, v,r + r>
<". f I t'(, ,t)P(a + Jti, + JP.,t + r)>dad#]

.exp - 2;r(uta + vu4)]dad4J. (7.33)

where (P(o.,,t)P(,+ a, 3 .f3. t+r)> is the space-time cross-
correlation function of the instantaneous point spread function. A few
measurements of the spatially integrated space.time cross-correlation
function have been made [7.38, 39]. They show that, in general, this
function is not cross-spectrally pure, so that it cannot be written as the
product of two separable functions of (u, v) and t.

( T(u v, 0)T44 v, t + r)> * Y(u, 0C(r0. (7.34)

(This result is referred to in Sect. 7.3.3 on the optimum exposure time.)
When J ,# -d=O, the space-time cross-correlation is simply equal

to the temporal autocorrelation of the point spread function
(P(a, 0, )P(a, f, t + r)>. Several measurements of this function have been
reported (7.38-41] and a sample of results taken at Mauna Kem, Hawaii,
are shown in Fig. 7.6; the average correlation time of the image intensity
was 15ms (61 cm telescope). In site testing for new locations for stellar
interferometry, it is important to measure both the spatial and temporal
properties of seeing.

Although it is the cross-energy spectrum that most directly influences
the effect of a finite exposure time it, from a more fundamental point of
view the important quantity is the fourth order correlation function of
the complex amplitude in the pupil:

((,,,t)A*( + V?, + p y, t)

• N + 207 +12, t + )A( + ,,+?I,, t +r) > (7.35)

As given in (7.33), this is an angle-ume correlation fiancion; the name space-time is more
widely used, distance (x.y) in the image plane being related to angie (2. ) by x=2f
Y-Of. when f is the focal length.

L
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Fig. 7.6. Temporal umage intensity autororreiabons over 5 nights at Mauna Kes. Hawai.
measured using a 61 cm telope [

7 391

(compare with the expression for 4 in (7.22)]. For both complex
Gaussian and log normal complex amplitude, this fourth order moment
is determined by the behaviour of the second order moment. RODDIER
and coworkers [7.42, 43] have calculated the effect of a finite exposure
time on the speckle transfer function using the log-normal model and the
assumption that the complex amplitude A( , n, t) moves rigidly across the
telescope pupil (the Taylor approximation). For a velocity t along the .
axis

<A( , 1, t)A *(4 +J4, + 4, r +)-r)> f(Ji - Jt, -i ), (7.36)

For a telescope of diameter D, a velocity v of the turbulence implies a
characteristic image time scale of Dlv; the results in [7.423 show that the
attenuation of the transfer function is not too severe provided that dt
<Dlv.

Spatio-temporal measurements (of AI2) imply that, in addition to the
rigid translation described by (7.36), there is also a strong decorrelation
due to "boiling" of A(4, i, t). This can be explained by a multilayer model
for the turbulence C7.24] with a velocity distribution iv of the atmo-
spheric layers; this leads to a characteristic time scale of r0/1v and a
uniform attenuation of the high-frequency part of the speckle transfer
function.

KAato and SC"INMiU [7.44] have measured the effect of a finite
exposure time on the speckle transfer function; their results obtained on

A,

4

01
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FiS 7.7 The effect of Bmte exposure tme on the sp ke hamler funcuon [7.44]

the 1.6m telescope at Maui, Hawaii, are shown in Fig. 7.7. Unfortunately,
the spatio-temporal atmospheric data required to compare these
measurements with theory were not available. However, the uniform
attenuation suggests that the wavefront "boiling" dominated over simple
rigid translation and implies a time-scale consistent with r/4vz20 ms.

7.26 Effect of Flnite Bandwidth

A finite bandwidth &j, centered at , has two effects both of which
attenuate the speckle transfer function. These effects are identical to those
observed in polychromatic laboratory-generated Fraunhofer plane
speckle patterns discussed in Chap. 3. The two effects are (i) a radial
dispersion effect similar to that produced by a grating and (ii) a loss of
speckle contrast caused by atmospheric (or, possibly, telescope induced)
optical path differences being comparable to the coherence length
1. 12 /I4 of the radiation.

In accordance with simple rest order grating theory, a spread of
wavelengths JA/A. causes a spread in diffraction angles zlo/6.

40a 4JA
- -7I-.WL) A

Taking Z to be the seeing angle I/ro (7.19), and defining co to be the
angular diameter of a speckle (a /D), we find that the fractional radial

IC

.3n
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elongation of speckles, zicu/cu, at the seeing angle to be given by

Jco JA D

COO~ A r0

To determine a criterion for the maximum permissable value of d,A,, we
require that Jw/oo < 1, yielding

JAIp < a.

V. , (7.37)

In order to calculate a criterion for coherence length effects to be
negligible, we require a formula for the root-mean-square optical path
fluctuation a,(4) between two points spaced ,- apart in the telescope
pupil; the Kolmogorov theory £7.24] predicts that

,r (7.387

in which a.(4) is in fact independent of wavelength since r. X01 5. Thus
over a telescope aperture of diameter D we may estimate a. by
substituting , 'D in (7.38); requiring that the coherence length 1, >c ., we
obtain

JA ) 2.4(7.39)

Other, more stringent, criteria have been suggested [7.23). For a typical
r -0.1 m and D-4m, criteria (7.37. 39) yield

"q'j<0.025, 0Il1,

implying that the chromatic dispersion effect is dominant and that, for
A-S0nm, the bandwidth JA should be less than 12.5 nm.

Measurements by KARO and ScHsi iAN C7.44]. with Diro a 14
show no discernable effect on the speckle transfer function for d,./X
<0.06; this is consistent with [£J/i], <0.07 given by criterion (7.37).
Even for ,/, a 0.14, the mid-frequencies of r(u, v) were attenuated by
only a factor of two.

Since the chromatic dispersion effect is important, it may be worth-
while to design a relay optical system that removes the dispersion [7.45].
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Various optical systems have been suggested for this 1"7.46], but they
suffer by having a very small effective field angle and no design has yet
been successfully incorporated into a speckle camera system.

7.2.7 saicty

If a linear system is non-isoplanatic (Le., if its point spread function
depends on both object and image coordinates), then the elementary
convolution relationship of (7.2) is replaced by

where P(J4, 4 ;a', ) is the instantaneous point spread function for an
object point at (a', '). There is now no meaningful concept of an
instantaneous transfer function or a speckle transfer function. However,
defining T(u. v; a, 0') to be the Fourier transform of P(a- -'., - #'; Z', p')
with respect to the variables (a, ). the average image energy spectrum
Oy(u, ) reduces to

0(,2)u<0li(,sv)I) = Co(,) (.V;')

•~u, t'(v;a-t- 1 )> expC-2;ri(ua-1 +vO,)2datdA,, (7.41)

where a =a-' and -,T.
If the function T(u, v; ', ') is independent of the object point (a', #'),

Le, the imaging is isopanadc, then (7.41) simplifies Co the usual result.

01l(u, v) - 00(u, U) <1 7"[=, v)l'> •(7.7)

However, according to (7.41), there is no longer a simple relationship
between object and image properties, and the form of the cross-spectrum,

between specde patterns produced by two point sources separated by
angle (at,#) plays an important role.

Koan et al E7.47], SAPut.o [7.48], and FPED 7.49] have in-
vestigated this problem using the log-normal model for atmospheric
turbulence. However. a more complete analysis can be carried out if the
complex Gaussian model of the wavefront A(4, n) is used, as shown by
Rownt et al [7.501. Using a multiple-layer model for the turbulence,

1.
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they estimate the "atmospheric isoplanatic angle" 6w to be given by

-uQ0.36 , P0(7.42)

where Ah is a measure of the altitude dispersion of the turbulent layers
[7.50]. This simple relationship does not reveal the fact that high angular
frequencies decorrelate more rapidly than lower ones as the angle of
separation (at, 0) increases, but gives a good estimate of the extent of the
isoplanatic region. Based on measured profiles of the variation of
turbulence with altitude (see Vernin in [7.42]), predicted isoplanatic
angles were in the range I.9 to 574 over six nights at Haute Provence
Observatory, with an average of 371 [7.50].

Several measurements of the isoplanatic angle or related quantities
have been reported [7.37, 51-53]. The values vary widely, the most
reliable quantitative estimates being in the range '5-570 [7.51, 52], Le.
the same order of magnitude as the theoretical predictions. Qualitative
estimates, based on the successful implementation of speckle holography
[7.37, 53], indicate some correlation of image intensity for stars as far
apart as 2270.

7.2.8 Self-Callbradon of Speckle laterferomutry

In order to recover the energy spectrum of the object 0 o(U, v), the average
energy spectrum of the image 0 1(u, v) is divided by the speckle transfer
function

0o(4, v) - 0(u, v)/,'(u, V). (7.43)

In practice, the speckle a.nsfer function is estimated by Finding the
average energy spectrum for a point source (or reference star).
Unfortunately, as we have seen in previous sections, the speckle transfer
function depends on a number of atmospheric parameters (such as r. and
time scale) and these parameters themselves vary considerably over both
short (-seconds) and long (-hours) periods of time. Under stable
atmospheric conditions, application of (7.43) is straightforward, but
under (more typical) unstable conditions, the use of (7.43) can lead to
considerable errors in the estimation of the object's spectrum. This is less
critical for measurements of simple structural features of an object (e.g..
the vector separation of a binary star) but crucial for photometric
features (e.g., magnitude difference of a binary star).

Two approaches to this problem have been suggested. The first is to
make simultaneous measurements of r, and use the established theory to
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predict the form of the speckle transfer function C7.24]. The measure-
ments of Ann et aL C7.31] and CI-m et al. [7.32] suggest that the
instantaneous (,dt-O), narrowband (4A-0) speckle transfer function can
be predicted for an aberration-free telescope, but in practice focussing
errors, aberrations, the finite exposure time and other effects may
influence it. Nevertheless, this appears to be a promising technique,
particularly in the infra-red where the second approach is less reliable.

The second approach, originally suggested by WotDEN and cowork-
ers [7.54, 55], involves subtracting the cross-correlation of uncorrelated
images from the autocorrelation of individual frames. Let I(7, ) be an
instantaneous short-exposure image and I'(a, 0) be another instantaneous
short-exposure image taken some time after the first one so as to be
uncorrelated with it; then, denoting the result by C;(a, 0),

- <I(a, ) a(a, a)>. (7.44)

In fact, no second image is required, since (7.44) is exactly the same as
[7.56]

- 00 ( I( * (a, 0)>, (7.45)

i.e. the average of the angular autocorrelation minus the autocorrelation
of the average image.

These equations may equally well be written in the angular frequency
domain, giving a resultant image energy spectrum O'(u. v),

(u, v) - OotU, )),(u, U), (7.46)

where the transfer function for this technique is given by

Y"r' V) - <l 1T7u, 0)1'> - I< TTu, VD)I' . (7.47)

The original hypothesis [7.45] was that the shape of 9-(u, ) is inde-
pendent of atmospheric seeing, and this is correct for the complex
gaussian model of the pupil amplitude A( , ?), as can be seen by
substituting (7.26) into (7.47):

r( .- r)(u V), (7.48)

where N,, is the number of speckles (=2.3(D/ro)), and T0 (Uzv) is the
diffraction-limited transfer function.
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Two factors combine to invalidate this result for the lower angular
frequencies. First, as remarked upon earlier, the asymptotic form of the
low frequency dependence of the speckle transfer function is
I( T(u, V)>sghZ, where (Ts is the average transfer function of centroided
(tilt-removed) images; this could be taken into account, in principle, by
centroiding each image r7.56] or by other methods £7.57].

Second, the additive form (7.26) of the speckle transfer function is not
predicted by the more accurate log-normal model, and the end result is to
invalidate this method for frequencies (u, v) less than approximately the
seeing limit, i.e. (u, v) r,1A [7.55, 58]. When DIr O is large, say > 10, the
seeing-limited frequencies constitute only a small fraction of the available
frequency plane and this method may be the most satisfactory way of
self-calibration. But in the infra-red, where Diro <10, it is not
appropriate.

73 Signal-to-Noise Ratio

In the visible region of the spectrum, the signal-to-noise ratio of a
measurement and the limiting magnitude of speckle interferometry are
ultimately determined, by the fluctuations imposed by the atmospheric
turbulence and the quantum nature of radiation. Although early film-
based speckle cameras were limited by other types of noise, the improve-
ment in detector technology over the past decade has made available
detectors that are photon-noise limited [7.59]. Thus in this section we
shall discuss only the fundamental noise sources relevant to visible light
speckle interferometry (the infra-red case is discussed in Sect. 7.5.2).

Let Q be some quantity that is to be estimated by speckle in-
terferometry; Q may be (a) a point in the energy spectrum o(u. v of the
object, (b) a point in the autocorrelation function Co(a, 0) of the object, or
(c) a parameter derived from the autocorrelation function or energy
spectrum, such as the diameter of a star, binary separation or magnitude
difference.

We define the signal-to-noise ratio, SNR, of this measurement as

SNRa* expected value of quantity
standard deviation of estimate'

or

SNR [(Q>)' (7.49)
[varQ)] ,
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where var(Q)aKQ2> _<Q>
2 is the variance of Q. In the analysis that

follows, the SNRs relate to an estimate of Q based on a single frame of
data. Normally, one would take M frames of data and, provided these are
statistically independent, the overall SNR for the M frames (SNR)W, is
simply given by

(SNR),-SNR.M' 2 . (7.50)

The signal-to-noise ratio is the inverse of the relative error of
measurement and in a given astronomical application we would nor-
mally be interested in the relative error on some parameter (such as
diameter), as in (c). However, each problem has its own specific parame-
ters of interest and to keep our results as general as possible we shall
consider the SNR of the energy spectrum or autocorrelation function.

Several investigations of the SNR of a measurement of the autocor-
relation function have been made [7.33, 57, 60-63] and the review in the
first edition of this volume [7.12] outlines this approach. However, it has
been shown [7.64] that the autocorrelation and energy spectrum ap-
proaches give exactly equivalent signal-to-noise ratios, although the
detailed expressions show little apparent similarity. The decision whether
to use the autocorrelation method or the energy spectrum method of data
reduction should be based on operational considerations and not on
SNR considerations. Thus in the following subsection we evaluate only
the SNR of the energy spectrum of the object.

7.3.1 Signal-to-Noise Ratio (SNR) at a Point in the Energy Spectrum

The SNR at a point in the energy spectrum was first evaluated by
ROwDwIR [7.65] and subsequently in more detail by several authors
[7.66-69] and reviewed in detail in [7.70]. In this analysis we shall use
one-dimensional notation for simplicity, and it is convenient to deal with
energy spectra of the image and object that are normalized to unity at
zero angular frequency, denoted by 0 ,(u) and &o(u), respectively. These
are related in the usual way,

4;1(u) - -io(U)'r(u), (7.51)

where the speckle transfer function .'(u) in the frequency range of
interest is given by (7.26):

2r =I ro ~ (D-no)
( L -. T D (u ) , - <- <u < .(7 .2 6 )

N,
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We model the jth image, D(), as an inhomogeneous or compound
Poisson process which has a rate proportional to the classical image
intensity 1,(a), i.e.,

k-1

where each delta function represents a detected photon event, zjk is the
location of the kth event in the jth frame and N, is the number of
detected photons in the jth frame. In an observation, the squared
modulus of the Fourier transform dj(u)l2 is computed for each frame. It is
straightforward to show that the average of this is given by [7.66]

<Kdj(u)l'> - N92$(u) + 1, (7.52)

where A is the average number of detected photons per frame. It follows
that the energy spectrum of the photon data, <ld(u)12>, is a biased
estimate of 0,(u) to the presence of the 9 term; in the realistic case in
which the photon events are not delta functions but have a unit volume
spread function S(,), the second term would be Nrs(u)12 .

There are two estimators Q whose average yield an unbiased estimate
of the image energy spectrum. One possibility is to subtract the average
number A from each Id,(u)A2

,

Q, = Idjtu)12 -,R, (7.53)

and the second possibility is to subtract the actual number ,V,

Q, - jd,(U)l 2 -, j . (7.54)

In either case, the average values of Q are unbiased estimators,

< Q, > = < Q, > -R I 6,ku. (7.55)

For the first estimator, the variance is equal to [7.67]

varQ,)= 9 -+2(2 + NW 3  (u)+ ,&2P1 (2u) -4i+ &'(u). (7.56)

As in all problems of this type, the fluctuation at frequency u is influenced
by the value of the energy spectrum at frequency 2u. At exceedingly low
light levels S 1 (probably of no practical interest!), the SNR per frame
for estimate Q, is, using (7.49, 55 and 56),

SNR = 3'2 i'$(u), ,R 1. (7.57)

I
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The use of definition (7.53) for the estimate Q, has the disadvantage
that the noise associated with Q 1 contains a contribution arising from N,.
the actual number of photons per frame. These fluctuations are related to
the brightness of the object and not to its structure. If one is interested in
the morphology of the object. Q2 is a better estimate; its variance is given
by [7.69]

var(Q2) _N2 + t 2'1 (2u) + 2t 3 1(u)+- N'?(u). (7.58)

If we consider only frequencies u>ID/A, the second term in (7.58) can be
ignored, yielding a SNR per frame of

SR N0,(u)

SNR + .(U) (7.59)

Equation (7.59) is the general expression for the signal-to-noise ratio
at any point (u>4D/A) in the energy spectrum of the image. If the speckle
transfer function is known exactly (this is never true in practice), then
(7.59) is also the SNR at a point in the energy spectrum of the object.
Substituting (7.26, 51) into (7.59), and defining the average number of
detected photons per speckle A as

-= A N/r L (760)

we find that the SNR per frame becomes

SNR= RTO(u)$(u) (7.61)
1 + UTO(u)0o(U)"

Two limiting cases are of interest: very bright objects and very faint
ones.

(i) For very bright objects, such that

RTD(u) Po(u): >1,

then,

SNR;i. (7.62)

Note that the SNR per frame cannot exceed unity in speckle in-
terferometry and this is one of the disadvantages of the speckle technique,
compared to pupil plane interferometry, for bright objects.
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(ii) For very faint objects, such that

tiTD(u$D0 (u)4

then

SNR A N0 1(u)

afiETD(U)4o(u), (7.63)

where, as before, ' is the average number of detected photons per frame
and R is the average number per speckle. This particularly simple formula
for the SNR per frame at a point (u> +Di ) in the energy spectrum of the
object is in practice valid for all fainter objects.

An example of the variation of SNR per frame as a function of R is
shown in Fig. 7.8 for D/r = 10, 20, and 40. For faint objects, the SNR is
proportional to r , so that there is a strong dependence of SNR on the
seeing. On the other hand, since the average number of photons per
speckle (7.60) is independent of telescope diameter, the SNR at a point in
the energy spectrum is also independent of telescope diameter, for faint
objects. Of course, a larger telescope yields more independent points in
the energy spectrum.
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7.32 Opdmm Expose Time

In the low-light-level case, the SNR at a point in the energy spectrum for
M statistically independent frames is, from (7.50, 63),

(SNR).2 VM9 .V0(u) (7.64)

It appears at first sight that a larger exposure time (ie., increasing RQ)
leads to a higher SNR; however, this is true only up to an optimum
exposure time, after which the decrease in M and 0,(u) dominates. The
optimum exposure time has been evaluated by WAUCEst E7.62], and
O'DoNNEu and DAiN'Y [7.71].

Let the exposure time be denoted by dt, the experiment time by T
and the photon rate by Ams/i4t; then, assuming that neighboring
exposures are always statistically independent" (7.64) can be re-written as

(SNR),, a A V -.A Ptjtu), (7.65)

where 4.,,(u) is the measured image energy spectrum for an exposure
time 4t. The temporal behaviour of the image intensity has been
discussed in Sect. 7.2.5; there we showed that the measured image energy
spectrum may always be written, see (7.31),

- 1 JI i L" 0\ (ut(ut+r)>dT.

Both theory and experiment show that, in general, the cross-spectrum
(i*u, ti4u,t+T)> is not separable. On the other hand, measurements
"7.39] indicate that the approximation, see (7.34),

i*(u, t)i(u, t + r)> ' AD(u)C(r) (7.67)

may not be unreasonable under typical observing conditions; in (7.67).
0(u) is the normalized instantaneous energy spectrum and C(T) is the
normalized temporal autocorrelation function of the stellar image (some
measurements are shown in Fig. 7.6). Substituting (7.66, 67) into (7.65) we
obtain

(SNR)w s (u)2/ J(l - C(r)dr. (7.68)

Clearly, neihboring exposures cannot be statistically independent unlessa t correlation
time of the image intensity: when there are only a small number of detected photons per
frame, however, there is an approximate statistical independence t or neighboring frames.

, L
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Fig. 7.9. Relative SNR ast a point in the power spectrum as a function of the length of the
individual short exposures for two models of the time-correlation of the image intensity.
The overall time of observation is assumed to be constant and it is also assumed that the
averge number of detected photons per speckle is very much less than one [7.71)

In Fig. 7.9, the SNR is plotted as a function of exposure time for two
models of the temporal correlation function C(:), Gaussian and negative
exponential, each having a t/e correlation time of v,; the Gaussian model
appears to give a better fit to the experimental data of Fig. 7.6. It can be
seen that the overall SNR is highest for exposure times 4t equal to 1.6-r.
for the Gaussian model and 21r, for the exponential one. This is
somewhat larger than might be expected and certainly much larger than
desirable at high light levels where photon noise is negligible. Since the
SNR decreases rather slowly for exposure times longer than 2;., we
can also conclude that, if there is some doubt as to the value of r, longer
rather than shorter exposures should be used.

7.3.3 Limiting Magnitude

LARBYvrI concluded his original paper on speckle interferometry C7.61
with the comment that "the technique appears to be limited to objects
brighter than m, - 7'. It was quickly recognized by LABEYRIE and others
that, in fact, the faintest objects that can be resolved by this technique are
a factor of 105 fainter, of apparent visual magnitude m, _ 20.

Any estimate of the limiting or just-observable magnitude depends on
the criterion adopted for "just-observable" as well as on the usual

L
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parameters such as detector quantum efficiency, bandwidth, expo ,are
time and so on. Three examples are given below: an estimate of the
complete object energy spectrum, the detection of a binary star, and the
measurement of the diameter of a star. In each case we define a factor F
to be the product of the exposure time it [s], the optical bandwidth
J. [nm] and the quantum efficiency q of the detector,

FM 4't.q. (7.69)

We also use the fact that a source of apparent visual magnitude m, gives
rise to an average number of detected photons per m2 per frame. R,, of
[7.72]

"A' =F 10 - '. (7.70)

Estmation of the Object Energy Spectrum

At low light levels, combination of (7.50, 63 and 70) gives a SNR of

(SNR), - M112 I D2 Fr .. o.435 (r,21

which can be re-arranged to give [7.70]

= 8.8 + 2.5 logF- 2.5 log(SNR)., + 1.25 logM

+ 25 log[,o(u)T0 (u)J + 5 logr o . (7.71)

For ro=0.1m, M-10', Jt=0.02s, J.t=25 nm, q-0.1. ,0 (u)T0 (u)-0.2
and a limiting (SNR),=,5, (7.71) predicts a limiting apparent visual
magnitude of approximately m,- 13.3, corresponding to approximately
300 detected photons per frame in a 4 m telescope. Note that the limiting
magnitude defined in this way is independent of telescope diameter and
depends quite strongly on the seeing parameter r.; in fact, the de-
pendence on r. is stronger than (7.71) indicates since the bandwidth and
exposure time both change with ro [7.23] (Sects. 7.2.5, 6). The value m,
- 13.3 is a conservative estimate of the limiting magnitude for many
purposes, since it is based on the criterion that the SNR have the value 5
at every point in the energy spectrum.

Detection of Binary Stars

Using a formula for the SNR based on the autocorrelation approach
[7.61, 70], in which the estimated quantity is the height of the binary star
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autocorrelation peak above its local background, we can derive the
following limiting magnitude for a binary whose cornponents are equally
bright:

m, a 17.3 + 2.5 IogF - 2.5 log(SNR), + 1.25 logM

+ 2.5 logD 2.5 logr o . (7.72)

Substituting the same parameters as above now leads to a limiting
magnitude m, - 17.6, corresponding to approximately 5 detected photons
per frame an average. By increasing the number of independent frames to
106 and slightly increasing the exposure time and bandwidth, binaries as
faint as ot, - 20 should be observable.

The limiting magnitude predicted by (7.72) has been effectively
achieved by HEou et aL C7.73] in their measurement of the 16.2
magnitude component of the triple quasar PG 1115 + 08 using approxi-
mately 20,000 independent frames.

Esdatiadoe of Object Diameter

WAxLKR [7.57 has made a comprehensive study of the accuracy with
which the diameter of an object can be estimated by speckle in-
terferometry, assuming a known limb darkening profile of the star. His

20

d- 075 Fig. 7.10. Limiting magiatude
14 m, as a function of the desied

fractional accuracy for a typi-
cal set of observ.i Panme-

12 ten on a 4m-class telecope
(observing period 2000s)

i 0 ( 7.58]
10 1.0 0.) 0.01

Accuracyj%)

results are summarized in Fig. 7.10 for a collection of observing parame-
ters that are similar (but not identical) to the previous two cases. For 1 %
statistical error in a diameter whose value is 0'.5, the limiting magnitude is
approximately m, -16. Of course, other deterministic effects such as
those due to atmospheric calibration are not included in this or previous
cases.

I
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7.3.4 Space-Tie Speckle Iaterferomney

In the analysis of the optimum exposure time in Sect. 7.3.2, we found that
exposures as long as twice the temporal correlation time of the image
could be optimum from the point of view of signal-to-noise ratio. Such
long exposure times result in attenuation of the high angular frequency
components in the measured energy spectrum, and those remain un-
corrected. Another drawback of the straightforward speckle method is
that no use is made of the fact that photons detected at the end of one
exposure are associated with essentially the same classical intensity as
those detected at the beginning of the next exposure; thus there is a
potential loss of information.

"Space-time" speckle interferometry [7.71, 74] is an extension of
speckle interferometry .that includes correlations in the time domain as
well as in the spatial or angular domain. In one such scheme, the
temporal cross-energy spectrum (i*(u, v, )i(u, v, t + ,)> is estimated and
used to frind an estimate of 0,(u, v) that is not biased by the effects of a
finite exposure time. However, the signal-to-noise ratio of this technique
does not appear to be any higher than that associated with the "optimum
exposure time" method [7.71]. It does not appear to be worthwhile
implementing space-time speckle interferometry unless other benefits can
be found (such as obtaining object maps [7.74]).

7.4 Reconstruction of the Object Intensity

The fundamental equation of speckle interferometry relates the average

energy spectrum of the image 0,(u, v) to that of the object 0 ,(L, v),

0(u, v) - 0o(, v)Y(u. U), (7.7)

where Yr(u, v) is the speckle transfer function. Under favorable conditions
this equation can be inverted to yield an estimate of the object energy
spectrum

(u v) a o(u. )1

0 _J O~A.)exp( -2i(au +0]v)dad#, (7.73)

where O(a, P) is the angular distribution of object intensity and o(u, v) is its
Fourier transform. It should be noted that, by the van Cittert-Zernike
theorem [7.2], o(u. v) is a spatial coherence function (strictly, the mutual
intensity) and Jo(u, v)l is often called a visibility function.
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It is impossible, in general, to calculate a unique object intensity
0(z. f) from a knowledge of only its energy spectrum 0o(u, v); this simple
fact cannot be stressed too strongly. In some special cases, unique
reconstruction of 0(a, 0) is possible; in a second set of special cases,
unique reconstructions can be formed almost always; and in a third set of
special cases, additional information is available that enables a unique
solution to be found.

The object energy spectrum 00 (u. v) contains no obvious information
about the phase of the Fourier transform of 0(a. 0) and for this reason the
problem of reconstructing the object intensity from 00 (u, v) is referred
to as the -phase problem". Phase problems arise in many branches
of physics--scattenng, x-ray diffraction, coherence theory and
microscopy-and a detailed review is beyond the scope of this chapter
(see [7.75, 76]). Our review will be strictly limited to the phase problem as
it occurs in the measurement of angular coherence functions by stellar
speckle interferometry; short reviews of this may be found in [7.12-15,
77] and a comprehensive review was gven by. BATES [7.11]. It is
interesting to note that some of the earliest work on the phase problem
by Lord RAYLEIGmH [7.78] and, in the modern era, by WoLF [7.79] was
also concerned with coherence theory.

The plan of this section is as follows. In Sect. 7.4.1 we discuss the
basic reason for the ambiguty of the phase problem. The next two Sects.
7.4.2 3 deal with attempts at object reconstruction from the energy
spectrum only, whilst in Sects. 7.4.4-7 we describe other methods that
incorporate information in addition to the energy spectrum. The subject
is summarized in Sect. 7.4.8. The review is limited to the speckle method
of stellar interferometry, in this regard it should be noted that there is
increasing evidence [7.9, 80-82] that other methods of stellar in-
terferometry are probably more appropriate for object reconstruction.

7.4.1 Ambiguity of the Pb.. Problem

An essentially theoretical restriction in the phase problem, which is
always satisfied in practice, is that the object intensity 0(a, 9) has a finite
angular extent with support lZa. 2b); thus o0u,4 ) is the finite Fourier
transform,

* b

o(u'v) x O.) exp - 2,ua.+-v)] d, d#. (7.74)
-a -b

It can be shown that the analytic continuation of ou, ) to the complex
plane, oz 1, z 2) where z , : are complex variables, is an entire function of
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exponential type. Such functions are completely specified by their
(complex) zeros. The zeros provide a unifying concept for the study of all
phase retrieval methods; their importance in interferometry was dis.
cussed by BATES [7.83] and in a more general context by Ross and
colleagues [7.85--87]. Although the zeros are the unifying concept, they
are not necessarily of practical value in computer-based algorithms due
to the complexity of determining their locations.

Before discussing the reason for the ambiguity of the phase problem.
we should note that certain phase ambiguities do not affect the form of
the object intensity and are ignored in the following analysis. Defining
the phase of o(u, v) as phase {o(u, v)}, we are not concerned with the
following variants:

phase (o(u. v)) + , where 0 is a constant, (7.75a)

phase (o(u, v)} + 2*ua,+ +vf 1 ),

where (a,,) is a constant vector, (7.75b)

- phase (o(u, v)}. (7.75c)

The addition of a constant phase, (7.75a), does not alter the object
intensity O(, f); the second variant, (7.75b), leads to a shifted object
0(a +ls, P + #1); the third case, (7.75c), gives 0(- , -), which is a 180'
rotated version of the object. In the discussion below, these trivial
ambiguities are ignored.

Our approach to describing the phase problem is, following BPucs.
and Soom C7.881, to represent the object by a finite number of samples.
equally spaced (for simplicity) by A on a grid of(N+ 1) by (M+ 1) points.
Defining new complex variables w, and w2

w, - exp( - 2razed), w, =exp(- 2iz2 4), (7.76)

the Fourier transform o(w1, w,) can be written as a finite polynomial in
w, and w2

(W 1, W2)-w~j' = W1 O"n-2m4-bw1..-o .- o

The terms w-" ' and w-"' merely define the (a.#) origin; ignoring these,
and simplifying the notation we write

O" . Z 0 (
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The most important feature of (7.77) is that the (discrete) Fourier
transform of the object intensity can be written as a finite polynomial in
the complex variables w, and w-, the coefficients of the polynomial being
the sampled values of the object intensity. In this approach to the

phase problem, the mathematics of polynomials is important; note,
however, that this approach is less general than required by the original

problem, which was for continuous, not discrete, object functions.

Consider now the one dimensional case,

o(w,)== Ox,~t (7.77a)

-~0

A one-dimensional polynomial can always be factorized, or reduced, into

prime factors,

N
o(wI) - C l-I (w - w1.,' (7.78)

j.1

where C is a constant and wI., are the roots or zeros. The N zeros and the
constant C completely determine the Fourier transform ol w) and hence
the object 0,. If the object is real, as in the present case, the zeros lie on
the unit circle or in complex conjugate pairs around the unit circle and
only N/2 zero locations are required to specify the object; positivity

T, (b)
W-P'otme I

T d.

Wv-Plarme i

_,.,.t-0.5.,.,.

0.5 ,

Fig. 7.11. la) a real posiuve object. (b) zeros of its

Fourier tmsform. ic) zeros of its energy spec-
t'um tcourtesy of B. 1. Bramesi

rA
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requires that no zeros lie on the positive real w, axis. Figures 7.1Ia
and b illustrate these results.

In a similar manner, we can represent the energy spectrum 0o(u) as an
analytic function o(z,)o*(z); the conjugate function to o(w1) is just
o(l/w,) so that ,0(w1) can be written as a polynomial of degree 2N:

N

0 0 (wt)=C2 [ (w - w)(w - I/w ). (7.79)
is 1

That is, the complex zeros of 0 0 (wI) consist of the original N zeros of the
object transform plus their inverses. This is illustrated in Fig. 7.11c.

Thus, the essence of the phase problem is that, without some basis for
choosing between the correct zero and its inverse, we could construct 2"'
equally valid sets of N zeros each representing a real, possibly positive,
object. In the one-dimensional case, there is no unique solution to the
phase problem, in either a theoretical or practical sense; additional
information is required to ind the object intensity.

Consider now the two-dimensional case, where the Fourier transform
of the object intensity can be written as a polynomial in two complex
variables,

O(w,,W2) =,- ) O-W"tW7. (7.77)
.V . 14-

NAPml and BATes [7.89] were the first to find that a unique solution to
the phase problem was more likely to occur in this case. In one
dimension, ambiguity resulted from the factorizability of the polynomial
(7.77a); in two dimensions, as shown by BRUCK and SoDIN [7.88],
ambiguity may also exist if the two variable polynomial (7.77) is
factorizable (or reducible) and the degree of ambiguity is determined by
the number of non-self-conjugate irreducible factors. However, there is a
very small probability that any two-dimensional polynomial is reducible;
in fact, reducible polynomials in two dimensions are a set of measure zero
[7.90]. Thus one is tempted to assume that the two-dimensional phase
problem has a unique solution "almost always".

The uniqueness of the two-dimensional phase problem is the subject
of much current research. The results of applying the algorithms to be
described in Sect. 7.4.3 strongly suggest that effectively unique solutions
may exist for certain objects, although of course it is always possible to
produce counter-examples [7.91,92]. FMDY et al. [7.93] and FENUIJP
[7.94] have used Eisenstein's irreducibility theorem to define one particu-
lar class of objects for which a unique solution is guaranteed.

I7
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There are three basic approaches to solving the phase problem in
stellar speckle interferometry. In the first, it is assumed that something
about the object is known. For example, for a symmetric object intensity

0(a, M - 0( - a. -) (7.80)

the Fourier transform o(u, ) is purely real and continuity arguments
enable it to be found from Jo(u, v); a rotationally symmetric object is
included in this category. Speckle holography, to be discussed in the next
subsection, also assumes that the object has a known property. In the
second approach, one assumes that the two-dimensional phase problem
is almost unique and seeks an algorithm to recover the object intensity
from the modulus information alone. In the third approach, additional
information is extracted from the speckle images in a number of different
ways (Sects. 7.4.4-7).

7.4.2 Speckle Holography

The technique of speckle holography, in its original and most elementary
form [7.95, 96], relies on the presence of a reference object, preferably a
point source. Let the object field be written as the sum of a'point centered
at the origin and the object under investigation 0 (Oi) centered at
(a1, /1),

O = (=)€fl)+ Ol(: 1, -/t).(7.81)

The spatial autocorrelation of (7.81) consists of four terms

CO(a, 0) - J J 6( O)6(a' +a)(l -A )ddd#,'

+ Ox=-°=, / t)+ O(- -=1,-/ -x)' (7.82)

The first two terms are located in the region of the origin, the third is the
object centered at (a',/) and the fourth term is a 180 ° rotation of the
object centered at (-;l, -/#,). Provided that z, >3a/2 and 01 >3b/2Z
where the object extent is (a, b), the third and fourth terms are separated
in angle from the first two and a reconstruction of the object is obtained
(,with the 1800 rotatic i ambiguity). WEIGELT [7.97-99] has demonstrated
that this is a useful astronomical technique and Fig. 7.12 shows an

i:A
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Fig. 7.12. Speckle holography of
ADS 3358 [7.98]

41-

POS.A.

AOS 336 A-3-C

example of the reconstruction of a triple star using speckle holography.
The extent of the atmospheric isoplanatic angle is clearly important in
speckle holography (Sect. 7.2.7).

If the reference point is not separated by the "holographic distance"
then, in general, the object intensity cannot be reconstructed un-
ambiguously unless further information is available. For example, Lw
and LoiMANi.N [7.100] suggested using the long-exposure image as a
mask, and BALDWIN and WsaRNaR [7.101] used the knowledge that one
star is brighter than the others to unravel the object (star clusters) from
the autocorrelation function. Indeed, if the object consists of a discrete set
of points and no vector separation between points occurs more than once
(Le, non-redundant spacings) then a unique solution to the problem
exists [7.102. 103]. In another special case described by BRUCK and
SoWN (7.87], a one-dimensional object can be reconstructed uniquely
provided that the reference point is not in line with the object in the two-
dimensional plane. The irreducibility criterion described by FMDDY et al.
(7.93] also involves the use of reference points less than the usual
holographic distance.
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WEIGELT [7,104, 1051 has suggested a technique called 'speckle
masking" that is related toholography in the sense that the speckle short-
exposure images are preprocessed to yield an approximation to the
instantaneous point spread function. In a more general sense, the speckle
masking method involves the determination of the triple correlation

C04;" 3 co, go) 0 0a.o M)" I(a - o, A - 3o) * 1(a" P),

from which the triple correlation of the object,

co(o" fl; "o, 30) a [O(o" 3)" O (a- ao, fl- 30o)] * 0(m, A),

can be determined by subtraction of bias terms [7.105]. Depending upon
the complexity of the object, it is possible to determine O(a. f) from the
triple correlation C0(a,. e, o,0 o).

7.4.3 Modulum-Ouly Algorithms

In this approach to object reconstruction in stellar speckle interferom-
etry, it is implicitly assumed that the two-dimensional problem does have
a unique solution. Three algorithms that attempt to recover this solution
are described below. Any result produced by these algorithms is therefore
subject to two uncertainties: a) did a unique solution to the phase
problem exist, even in principle? b) if it did exist, did the algorithm
converge to this solution? Strictly speaking, uniqueness of the solution to
the two-dimensional phase problem is not guaranteed and none of the
algorithms described here have been shown to always converge to the
unique solution when one is known, a priori, to exist. On the other hand,
the overwhelming proportion of experimental evidence suggests that, for
simple objects, some of these methods are successful in reconstructing
object maps.

lteradVe Algorithm

FnanUsP has suggested a number of iterative algorithms [7.106-110] for
computing the object intensity from a knowledge of only the modulus of
its Fourier transform and an estimate of the support of the object. Two
possible schemes are shown in Fig. 7.13. The first scheme, called the error
reduction method because the mean square error between iterations
always decreases [7.110], is a generalized form of the GEacHsnReO-
SAXTON algorithm [7.111]. Starting with an estimate of the object
intensity at the kth iteration O(ae, ft), the transform 6,(u. 0 is calculated.



SI -s 12 A q 1,F/C 3/1 ML



11111411L

AL_ II



96.

294 1. C Djnfl

Fit 7.13a, b. Two igueave al.(n} .(a,8) k['w|l~leii' goritho for solving the phasbe
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The modulus of this transform is replaced by the given modulus, forming
a new estimate 6,(u, u) chat satisfies the constraints of the problem in the
Fourier transform domain. This is inverse-transformed to give a new
estimate of the object 0'(s, #) which is set to zero in the region where the
object is known to be zero and set equal to zero where negative object
values exist, thus forming a new estimate Ok [(a,#) which is the starting
point for the next cycle. In practice, the error reduction algorithm
converges very slowly and it is generally most useful when applied with
one of the "input-output" algorithms.

The second scheme is shown in Fig. 7.13b and is called the "input-
output" algorithm. The only difference between this and the error
reduction scheme lies in how the next starting input O,. 1(0 0) is derived
from the previous output esumate O (a, 0) and input 6k(a, f). To a first-
order approximation, a small change in the input gives a small change in
the output proportional to that in the input (plus nonlinear terms); thus,
by changing the input it should be possible to drive the output in the
desired direction. The most satisfactory version of this scheme, called the
hybrid input-output algorithm is

(n )=, (e, ) when object constraints satisfied

6(a.)-yjk(a ,0) when not satisfied, (7.83)

where 7 is a parameter, typically on the order of unity.

a'
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Fig. 7.14. (A) O iginal object: (BI (C) eusmpla of simulated degraded imags: ID) Fourier
modulus estimate computed from degraded images; (E) image reconstructed using iterative
algoritm (7.110]

A discussion of the relative merits of different iterative algorithms is
gven' in [7.110]; at the present time, these algorithms are still rather ad
hoc and their success appears to depend to some extent on the skill of the
propammer. Figure 7.14 shows some results obtained by Fienup. These
algorithms tends to successfully recover the object intensity for simple.
but non-symmetric, objects; the shape of the support of the object also
appears to affect the success of the iterative method. It should be stressed
that this (and other) algorithms can fail to converge to the correct
solution for complicated objects.

Phmase,- Algortium
BATu and coworkers [7.112-114) have suggested an algorithm that in
its original form may be useful as a starting point for the Fienup

IAm
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algorithm [7.115-117], and in a future improved form may be valuable
on its own. Consider an array of N by M values of the Fourier transform
of an object (for a real object of size N by N, M = N/2+ 1); the aim of this
algorithm is to calculate the phases of each point 6is, allowing any one
point (usually the origin) to be set to zero. Bates and coworkers suggested
the following two step procedure:

i) Estimate the magnitude of the (N - 1) by M phase differences
along the u-axis, 0 *-j and the N by (,M- I) v-phase differences

ii) Compute the N by M phases from the magnitudes of these (2NM
- N- M) z2NM phase differences.

Let us assume, for the moment, that step (i) is possible and see how
phase closure might be used to determine the phases. Consider the
rectangle comprising the first four points (0, 0), (1,0), (1, 1), and (0, 1) and
assume that the magnitudes of the four phase differences are known:

101.0 -80,0  "1 1

l01. 1 -01.01 -V2' (7.84)
011 - 0 .1,1V 3 ,

00., -0.o01 =',.

Clearly, we can set

00. 0 =0 (7.85a)

and

0,., o + W.(7.85b)

(If in fact 0,., , - W1, the object reconstruction will be rotated by 180°.)
Proceeding around the rectangle anti-ziockwise,

0t. L 'W1 ±W2 (7.85c)

and this leads to four possible values of 00 ,

80, -W%±WJ W3-(7.85d)

On the other ban& going directly from (0,0) to (0, 1) yields

80. t " 14' (7.85e)

BATE (7.112] argued that only one of the four solutions (7.85d) will equal

one of the two solutions (7.85e), thus determining the phases at each of
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the four points. If this is the case, then this procedure could be repeated
for all points in the Fourier plane and the object intensity could be found
by inverse Fourier transformation. Since the number of phase difference
magnitudes is roughly twice the number of phases, it may be possible to
use the methods mentioned in Sect 7.4.7 for improving the phase
estimates.

Even if the above step (ii) works, it is still necessary to find the
magnitudes of phase differences, step (i). These can be estimated by
oversampling the modulus in a scheme in which the Shannon in-
terpolation formula is replaced by two point interpolation [7.1121; this
provides only a crude estimate of the phase differences (for example, a
large proportion have to be set equal to 0 or x) and requires improve-
ment for reliable object restoration by itself. Combined with a modified
Fienup algorithm that incorporates a preprocessing step to remove the
strong central lobe in the Fourier plane, this technique has been shown
[7.116, 117) to produce excellent reconstructions of simple objects.

Maximum Entropy Algorithm
In general terms, the maximum entropy method reconstructs the
smoothest object intensity distribution consistent with the available data.
It was first suggested for use with phaseless data by GULL and DANIELL
[7.118]; as with the other algorithms, there is of course no way that the
maximum entropy algorithm can resolve any inherent ambiguities
[7.119]. If there are ambiguities, this method restores the smoothest
object map.

7.4.4 Use of Expone ta Flt s

The ambiguity of the phase problem arises because the 2N zeros of the
object energy spectrum consist of the N zeros associated with the Fourier
transform of the objec, plus their inverses. Given only the 2N zeros of the
energy spectrum, it is impossible, in general, to select the correct zeros
from each zero pair. By making a second measurement of the energy
spectrum of a modified object intensity distribution [the original O(l, 0)
multiplied by exp(-2xaa), where a is a constant], it is possible to
unambiguously recover the correct N zeros and hence the object intensity
itselL This was first suggested by WA.gn [7.120] and WooD et al.[7.121].

The basic principle of the method is shown in Fig 7.15, where, for
illustration, there are only three sets of zeros. The zeros corresponding to
the original object are shown as solid circles * and their inverses as _-
given only the object energy spectrum it is impossible to determine which
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Im w - giane * 0 zeros of power spectrum of 0

icicule e a zeros of powe soectrum of Osp(-xi)

Fig. 7.15. The effect of exponential filterng on
zero locations

is the "correct" one. When the object is multiplied by exp(- 2xa). a >0,
the zeros in terms of the z-variable move from :, to :J - ia. and in terms of
the w-variable, w-exp(-2iz,), from wi to wexp(21a4); that is, the
correct zeros all move radially outwards by a constant factor, as shown in
Fig. 7.15 (0-6). The energy spectrum of the modified object contains
both these zeros (•) and their inverses (-); given both pairs of zeros (0, ,
a and Z) the correct zero (0) can always be located. Although our
description has been in terms of one dimension, the uniqueness of the
solution also applies to the two-dimensional case.

In astronomy, it is,'of course, impossible to place an exponential filter
over the object! W,.xal [7.122] showed that this is not necessary and
that the exponential filter may be placed in the image plane. Denote the
instantaneous image intensity by !(a. ) and the exponential filter trans-
mittance by G(i /3). The energy spectra of the image intensity and the
modified image intensity (l(x ft). G(a, /)) are

00(, v) -loau. 01' <1 TN.u 01'> (7.5)

and

WIN, v). -l ON, V)®(U, vOlz)

= < I {(U, V) T U, V)}) e t , >~f) (7.86)

where 0 denotes convolution and the other symbols are defined in Sect.
7.2.1.

Provided that

G t, +22,01t "*'2)M = fal Ox, t ) 2,0), (7.87)

C
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1E;

function; (c) a short exposure imamp (d)-(g) reconstrucions

usins respectively 10 25. 50. and 100 simulated point and
object exposures [7.1231

which is satisfied by the real exponential function, the convolution of

(7.86) simplifies to yield

W(u, v),-Io'(u, v)< I Thu. )l' (7.88)

where,

4o'(u v)-o(u. v)@gOu. V)

and

r(u, 0) - Tju4 v)® u, v).

Assuming that the forms of the two transfer functions <(Tluv)I2> and
<mu, vm)l> can be found (using a reference star, for example), we can find

'C
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the energy spectra of the object and of the modified object which are
sufficient data for a unique solution to the phase problem.

Having shown that a unique object reconstruction can be found from
ou, v)J1 and lo'(u, u)1, there remains the problem of finding a practical
two-dimensional algorithm that converges to this unique solution.
WALKER (7.122, 123] has used an extended version of the Fienup
algorithm that includes both sets of Fourier constraints. Figure 7.16
shows an example of reconstructions obtained by WALKER in a computer
simulation, using this algorithm. It should be noted that this proposed
method of object reconstruction uses only a single set of data for the
object and for the reference, as the exponential filter can be applied
numerically on the raw data.

7.4.5 Shift and Add

The short-exposure speckle images shown in Fig. 7.1 are of an unresolv-
able star in the upper row and --Orionis, or Betelgeuse, which is a red
giant star in the lower row. In simplistic terms, each "speckle" in both sets
of images may be regarded as an "image"; for the upper row, it is an
image of a point source and for the lower row it is an image of %-Orionis.
Such reasoning led HRavEY and coworkers [7.124, 125] to obtain the
first diffraction-limited map of a star other than our own sun.

In the original method, a few bright speckles are selected from each
exposure and superimposed with the aid of a digital microdensitometer
and computer. Figure 7.17 shows the ?esult of this process for a point.
object (a) and z-Orion in the continuum (b) and TIO absorption band
(c); clearly the giant star is resolved and the difference I(b-c)l indicates
possible temperature variation over the surface of the star. McDoNN±L
and BATES [7.126] have applied superresolution techniques to produce
an enhanced image of Betelgeuse from this data.

This approach to forming object maps has been extended by BATES
and CADY [7.127, 128] in a technique they call "shift and add". Let (a, f)
denote the coordinates of the center of the brightest speckle in the jth
image; each image is shifted such that (aj, 0) is at the origin and then
added to all other similarly shifted images, giving the result

R(a, 0)- I tv 114a- 'i0- 0J). (7.89)

This process is carried out for both the object under study and a reference
star; the image of the object is de-convolved using that of the reference
and an algorithm such as "CLEAN" [7.129]. A theoretical study [7.130]
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A B

C 0 0.05'

0

Fig. 7.17A-D. Diffraction-limized images computed from short exposure photographs by
Lyms et a. [7.124]. (A) unresolved star (7-Ori' (B) x-On or Betelgeuse, in the continuum.
(C) a-On in the TIO band and (D) the difference image (B)-(C). The contour levels are 5 % of
the peak intensity (A)-(C),; in (D) the interval is 2%, with the broken curve indicating that
the continuum is brighter

has recently confirmed that diffraction-limited information is preserved
in the shift and add method.

7.46 Ph Averaing

In the technique of speckle interferometry, the Fourier transforms of the
instantaneous image intensity and the object intensity are related by

Au. v) - o(u. )T1u, L), (7.90)

where T(u, v) is the instantaneous transfer function. The quantities
<(iu.v)2> and <ITu,v > are measured and an estimate of the object
energy spectrum Io(&. v))2 is obtained. Taking the logarithm of (7.90) we
obtain

phase{gu, ) phase(o(u, )) + phase{(TTu. ) (7.91)

_- _.
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and, taking the average

<phase{4u, v))> =phase{o(u, v)} + <phase{T(u v)}>, (7.92)

where, in all cases, the phase is the value in the interval - x to x. Thus,
provided that <phase{T(u, v)}> is known (or zero), the phase of the object
transform can be obtained from the average phase of the image
transforms; this method was first suggested by McGLAmy [7.131].

Using arguments based on the central limit theorem, it is not difficult
to show thaL for D .r, and angular frequencies

ro/,. < (u, v) < (D - to)i,

the quantity 7Tu. v) is a circular complex Gaussian random process; it
follows that

<phase{T(u, v)}> -0,

and that the phase {T(u, v)) folded into the primary interval - it to t is
statistically uniformly distributed.

The crucial step in implementing the phase-averaging method is
therefore the determination of the "unwrapped" phase (i.e., that in the
interval -ac to =) from the phase in the primary interval - 7 to it. In
principle, this may be done by assuming continuity of the phase and
following it out from the origin where it can be assumed to be zero. This
procedure is subject to error when the modulus Ii(u, uv) is small;
O'DONNEiL [7.36] has shown that the root-mean-square absolute error a
in the unwrapped phase is given approximately by

a= 1 (7.93)(2R)11 2 i(u, v)I'(.3

where Rq is the average number of detected photons per frame and i(u, v) is
the Fourier transform of the instantaneous image intensity normalized to
unity at the origin. Clearly, a small value of Ii(u, )1 leads to a large error.
For example, for a point object [4Po(u,0)-I] at an intermediate fre-
quepcy [T(u v)=0.5] and a large telescope (D/r o =40), an average value
of l~u, v)J is on the order of 10- 2, implying R > 8 x 10' detected photons
per frame for a phase error of less than 0.25 rad.

Despite the above analysis, computer simulations of the phase
averaging method have shown some promise [7.132. 133], particularly
for providing a starting point to the Fienup algorithm. Other algorithms
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for phase unwrapping have been suggested by TRizoL'r [7.134] and
SwAN [7.135]; in the latter, the average phase is calculated without
explicit unwrapping. Finally, MERTz C7.741 has suggested following the
phases of the angular frequency components in time in order to find their
average value; the error has not yet been evaluated for this approach.

7.4.7 Knox-Thompson Method

In this method, first suggested by Kox and THompsoN [7.136, 1371, the
cross-energy spectrum of the image intensity is computed; following the
notation of Sect. 7,2.1

Ki (u',uv)i'(u", u "))>
- o(u', v)o*(u*, V) < 71u', u) r'(u ", v")>). (7.94)

Taking logarithms of each side and equating imaginary parts, we find
that,

phase {Ki(uv)i*(u+4u,t+dv)>}

=phase {o(uv)J-phase {o(u+du, v+ dv)}

+-phase ((Tu,v)7"(u+u,v+4v))}, (7.95)

where we have made the substitutions

4u-zu"-u' and iv-v"-v' in(7.94).

Thus, provided that

i) (7",v)T(u+4uv+4v))*O and
ii) phase ((T(u, v)T*(u+4u, v+4v)>} is either known or zero, it is

possible to find phase differences in the object spectrum. This information
is then used to find the phase of the object spectrum and hence the object
intensity (if the energy spectrum is known). In the following we show
that (i) is satisfied when (u, v) < r/. and that phase
(<Thu, v)T'(u + du, v +J v)>) is approximately zero; we then discuss how
the phase difference information can be used to restore the actual phases.

To evaluate the quantity (Tru',v')T"(u",v")) we use a similar ap-
proach to that given in Sect. 7.2.3 to evaluate the approximate speckle
transfer function. In particular, it is assumed that the complex amplitude
of the wave in the telescope pupil from a point source is a circular
complex Gaussian process. Instead of (7.23) we now have the following
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expression for <T(u', V')T'(u", V")> :

< T(u', V')T(u", V")>

= T(u', v')To,(u", v")T,(u', v')T',(u", v")

H,(4, )H0 (41 + u',n, + v)H* 1,,?)

*Ho( 2 + A¢u", q72 + v")dW , d 4 2 d 2 d?7, (7.96)

where

4U-U"- ' JvmD"--V,

and the other symbols were defined in Sect. 7.2,3. Assuming that H,( , i)
is constant where T is effectively non-zero, the second term
reduces to, see (7.24),

.~\A A (//

* fJIH0( , , 4)g2IH +u v"+"'~--%.--) d~din. (7.97)

Bearing in mind that the seing transfer function T(u, v) has a width
- o/;,that it is clear from (7.97) that < T(u, v)T (u+ Ju, v+ d v)> can only

be non-zero if Idul and IdvI < ro/. [otherwise the first integral in (7.97) is
zero).

If we make the further approximation that the seeing transfer
function has a Gaussian shape [it is more accurately described by (7.17)],
then it is straightforward to show that

< T(u. v)T'(u + 4u, v+ do)>
= <1 7tu, v)l2> I 7,(4u/2, dv/2)11. (7.98)

That is. the Knox-Thompson transfer function is simply the product of
the speckle transfer function at (u, v) and the squared modulus of the
seeing transfer function at (du/2. dv/2). It follows from (7.98) that

phase < Tuv)T(u+du, v-+v)>zcO.
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Since (7.98) results from an oversimplified atmospheric model, it cannot
be relied upon quantitatively, but it does provide the correct qualitative
condition on Jdul and IJvl. Using the log-normal model, FRED [7.48]
suggests that the optimum value of Jlul and [ dvJ is approximately 0.2r0, :..

If we consider the Fourier transform of the object to be sampled on a
gid of N by M points there are approximately 2NM phase differences for
a single choice of (4u, dv); several schemes have been suggested for
efficiently computing the required NM phases [7.138-145]. This problem
is similar to that of calculating phases from shearing interferograms. It
may be helpful to use more than one value of (zu, Jv) [7.140].

In a variation of the Knox-Thompson technique, ArrKEN and
DESAULN MIS [7.146] suggest computing average ratios <i(u, u)/i(u +,u.
v - zlv)>, a possible advantage being that a separate reference calibration
may not be required. SiH.RAN [7.147] has extended the technique to
non-isoplanatic imaging. BRAms and DAINTY [7.148] have given an
interpretation of the method in terms of the complex zero picture of Sect.
7.4.1; this picture may be useful for studying the role of noise in the
technique. The effects of photon noise on speckle image reconstruction
with the Knox-Thompson algorithm have recently been investigated
[7.149]. Photon noise introduces a frequency-dependent bias which must
be corrected for successful reconstruction. In the photon-limited case
(low light levels), NisNsoN and PAPALIOLIOS [7.149] gave the lower
bound on the number of frames M required for "good" image recon-
struction of a point-like object as

M! 125(~)

where N,, is the average number of speckles per frame and 9( < N,) is
the average number of detected photons per frame.

7.4.8 Summary

In this section we have reviewed a number of possible techniques for
solving the phase problem, that is, reconstructing the object intensity, in
stellar speckle interferometry. The methods fall into two categories; those
that require only the modulus of the object Fourier transform (covered in
Sects. 7.4.2 and 3) and those that utilize other information present in the
original speckle exposures (Sects. 7.4.4 to 7). It seems obvious that
methods in the latter category are preferable for this particular phase
problem, since they make use of additional information present in the
available data.



108.

306 1. C. DA my

Although substantial progress in this topic has been made in the last
few years, the map of Betelgeuse obtained by HA~vuy and coworkers in
1975 remains the only non-trivial stellar object reconstructed from
speckle data. The practical difficulties in implementing the algorithms on
real astronomical data are frequently underestimated. Part of this
difficulty arises because the implementation of ordinary speckle in-
terferometry also has a number of practical problems that have to be
overcome if photometric accuracy is desired; some of these practical
problems are discussed in the following section.

7.5 Implenm tadon

7.5.1 Data Collection ad Processng

Speckle camera systems have been constructed by a number of groups
£7.143, 150-1543. As an example, we shall describe a "first-generation"
system used at Kitt Peak National Observatory for many years C7.153], a
diagram of which is shown in Fig. 7.18.

Referring to Fig. 7.18, light from the telescope, passes through an
electromechanical shutter (1) at the front of the speckle camera system
and reaches the Cassegrain or Richey-Chretien focus at (2). At the 4 m
Mayall telescope, the image scale at this focus is approximately 6.5 arc-
sec/mm so that a lens (3) is required to magnify the image 10 or 20 times
giving final image scales of approximately 0.65 and 0.32arcsec/mm,
respectively. At 500 nm, the diffraction-limited angular frequency of a 4 m
telescope is approximately 40 arcsec- ', and the sampling theorem there-
fore requires image plane sampling at 4c 0.012. or 0.04mm or less in
the 20 x magnified image plane; this value also determines the resolution
(or MTF) of the image detection system.

3 SIA41

Fig 7.1& Scbematic crow-secbon view of a speckie [ame's [7.153]

iA
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It is necessary to correct for atmospheric dispersion except when
observing close to the zenith. The magnitude of atmospheric dispersion
depends upon a number of factors (7.1551, but it is approximately given
by

dza0.3tanz arcsec/100nm,

in the middle of the visible spectrum. Either a grating system [7.150, 152)
or a pair of Risley prisms [7.151, 153] can be used to correct this; Fig.
7.18 shows the use of a prism pair. The optimum choice of glasses for the
prisms are LaK24 and KF9 [7.156--these match the dispersion of air
over the broadest wavelength range. A narrow-band interference filter (5)
selects the mean wavelength and bandpass (see Sect. 7.2.6 for a discussion
of the permissable bandpass).

The most critical element in a speckle camera system is the image
detector. Figure 7.18 shows an image intensifier/photographic flm
combination, which has the advantage of simplicity. A variety of image
intensifiers may be suitable-magnetically or electrostatically focussed
cascade systems, or microchannel plate devices; a variable (high) gain and
low background are two practical requirements for the intensifier.
Recently constructed speckle cameras and those under construction all
use some form of electronic readout; this has the potential advantages of
overcoming the noise and nonlinearity of photographic film and of
allowing the possibility of real-time analysis of the data.

The type of electronic image detector required depends to a certain
extent on the type of astronomical speckle observations that are planned
and the intended method of data analysis. Before describing possible
detectors it is therefore appropriate to discuss methods of data reduction.
In the first-generation speckle cameras, the photographic images were
analyzed in a coherent optical processor; this extremely simple analog
device gives as output the energy spectrum of the complex amplitude
transmittance of the film, the average energy spectrum being found by
summation of the energy spectra of M frames (M < 1000 in practice). This
technique could also be used for other "real-time" photographic-type
detectors [7.139], but these analog systems tend to suffer from non-
linearities and noise. Digital processing appears to offer more flexibility
and is the only way of implementing some of the object reconstruction
algorithms described in Sect. 7.4.

For conventional speckle interferometry, there are two approaches to
calculating the object information; one is via the average energy
spectrum, as in (7.5), and the other is via the average spatial autocor-
relation function as in (7.3). Allowing for moderate oversampling, large
telescope speckle data requires a format of at least 256 x 256 pixels and a

4
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ADS 111 3

Fig. 7.19. Output of a vector auoorrelator dispy in rea ume when observing a binary
star (courtesy of B. L Morgan and IL Vine, Imperial CoUer-, London)

desirable frame rate is approximately 50s- . Devices that compute
Fourier transforms of this size at this rate are becoming available, but
their cost may not be justified in this application. Consequently, the
average energy spectrum method of analysis is currently done after the
observations have been made and stored on a suitable medium such as
videotape.

On the other hand, the autocorrelation method of analysis lends itself
to real-time computation. VoAc [7.1571 has described a prototype on-
line digital autocorrelator for 16-level (4 bit) 64 x 64 pixel images taken at
a rate of 2s- 1, and predicted that full-scale throughout would be possible
with current technology. BLzrr [7.158] and the London group [7.159]
have constructed one-bit vector autocorrelators that process images
containing a few photons ( < 200) at 25 s - .Vector autocorrelators work
on the principle that the autocorrelation function of an image consisting
entirely of ones and zeros (presence or absence of a photon) is equal to
the histogram of vector differences between all possible pairs of photons.
This algorithm can either be hardwired in a special purpose device or
programmed into a fast commercial or customized microcomputer. An
example of the resolution of a binary star obtained with such a device (in
real-time) is shown in Fig 7.19. Another approach suggested by CoLa
[7.160] uses optical circuit elements to allow higher photon rates.

Depending upon the type of data analysis to be used, there are several
possible electronic detector systems. One of the most straightforward is

.5

k
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to use an intensified television camera or intensifier plus television
camera combination. The format of the data allows easy storage on
videotape, but diglital computer analysis, via a video-figniser system,
may be tedious. Another possibility is to replace the television camera by
a charge-coupled device (CCD) (7.161]. The advantage of both of these
approaches is that either analog (intensity) or digital (photon counting)
data may be processed. For low light levels, photon counting devices in
which the position and time of photoelectron events are recorded may
be preferable C7.162, 163], particularly since the recorded data is already
in a suitable format for vector autocorrelation processing.

It should also be noted that speckle interferometry can also be
accomplished using a single or twin photomultipliers (7.164] or with a
linear array (7.165], but there seems no advantage apart from cost and
only bright objects can be studied. Equipment for laboratory simulation
of stellar speckle interferometry has also been described [7.1663.

7.5.2 Oa-Dimmoul Iaftred Speckle Interferometry

Efficient two-dimensional array detectors in the near infrared (2-5 gm)
ae not yet widely available and therefore infrared speckle interferometry
has to be practised using only a single detector element. This feature, some
other special problems that are encountered and its demonstrated
astronomical success, make it worthwhile to devote a section of this
review to infrared speckle interferometry.

At first glance, infrared speckle interferometry would seem less
fruitful then that in the visible range, particularly in view of the restriction
to a single detector element. Table 7.1 summarizes the resolution
according to the diffraction-limit for a 4 m telescope (column 2) and the
seeing limit (column 4) for the wavelengths of 0.5, 22(K), 3.45(L) and
4.8(M) gm. From column (2), it can be seen that the diffraction-limited
angular resolution (Rayleigh criterion) is approximately 0.03 at 0.5 gm,

Table 7. 1.

I1) (2) (3) (4)
Wavetlegth JiD-4m) ro wU
taf3 farce-] Lin] 1-rc1ec]

0.5 0.03 0.1 1.00
2.2 (K) 0.14 0.6 0,74
3.45 (L) 0.22 1.0 0.68
4.8 (M) 0.30 t.5 0.64

t
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but only 0"30 at 4.8 pm, whereas a 1.0 seeing limited image at 0.5 jAm is
slightly smaller, 0'64, at 4.8 gm. Thus, taking the ratio of columns (2) and
(4), we see that there is typically a 33 times increase in angular resolution
possible by doing speckle interferometry at 0.5 jim, whereas the improve-
ments.at 2.2 3.45, and 4.8 jAm are only 5, 3 and 2, respectively (this does
assume "good" seeing). The reason why infrared speckle has been so
valuable is that, despite the relatively poorer angular resolution, there re
many more potentially resolvable (i.e., large) bright objects in the near
infrared than in the visible. Some infrared speckle observations are
summarized in Sect. 7.6.5.

The technique of one dimensional infrared speckle interferometry is
described in [7.167-171], particularly the comprehensive paper by
Smn.a et al. [7.168]. In the method developed by the French group, the
image is scanned over a Ion& narrow slit and the light collected by a
single indium antimonide (InSb) detector cooled to liquid nitrogen or
helium temperature. The bandwidth restrictions are much less severe in
the infrared than in the visible [see (7.37) and Table 7.1] the maximum
,;./. being on the order of 0.13 at 2.2 1m and 0.37 at 4.8 jim. The scanning
speed of the image across the slit has to be sufficient to "freeze" the
speckle, rates of 50-100 arcsec s - being typical; the effect of scanning
rate is described by .Ai et al. [7.172].

If the scan is assumed to be along the x-axis (corresponding to the
u-axis in the angular frequency plane), the temporal average energy
spectrum <I4f)12> of the image intensity lWt)frz/&,), where L. is the scan
rate, is given by

<14lf)12> - 1o1u. 0XQ<JT(u, 0M2'>'1tU), (7.99)

where the temporal frequency f is related to the angular frequency u by
f v and where the slit transfer function for a slit of width z,,, is

rk(U) sin(xuai. (7.100)

The one-dimensional temporal energy spectrum can easily be computed
on-line using a commercial microcomputer. By observing a reference star,
the speckle transfer function can be found, so that a section through the
modulus of the object energy spectrum o~u, 0)1 can be found. The
complete modulus could in principle be found by rotating the scan
direction, although because of practical problems connected with atmo-
spheric instability only north-south and east-west scans are usually made.

One of the greatest problems encountered in implementing infrared
speckle interferometry is the instability of atmospheric turbulence.
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Because the seeing limited angular frequency portion of the speckle
transfer function is a significant part of the whole transfer function, it is
not possible to use Worden's scheme for self-calibrating the method
(Sect. 7.28). Accordingly, a typical observing sequence is
object-sky-reference-sky-object, taking perhaps 100-1000 scans of
each and repeating the sequence until consistent results are obtained. The
"sky" measurement is required in the infrared due to emission from both
the sky and the telescop, and an estimate of the energy spectrum of the
object is obtained from

1o(u. 0 2 - iigf)l> (7.101)

The signal-to-noise ratio of the slit scan method is derived by Stan.a
et al. (7.168]. In addition to the atmospheric fluctuation and photon
noise of the signal that are the only fundamental contributions in the
visible, there is now also the photon noise of the "sky" background and
noise inherent in the detector, such as Johnson noise. Limiting magni-
tudes, based on the value of the object intensity that yields an energy
spectrum equal to that of the noise sources for a single 100 ms scan, were
predicted to be of the order of 5 to 6 for the K, L, and M wavelengths,
although practical experience indicates limiting magnitudes of approxi-
mately 7 (K) to 2 (M). SELaY et al. [7.167 used a grating rather than a slit,
thus measuring only a single-frequency component at a time; they claim
fainter limiting magnitudes but these have not yet been achieved.

In a new development of one-dimensional speckle interferometry
(visible or infrared) Aam et al [7.173] suggested the use of a telescope
with a one-dimensional aperture (eg. 10 x 800cm 2 ). This gives a contrast
gain over a circular aperture and, associated with a spectroscope, allows
investigation of the spectral-angular plane with no loss in light.

7.6 As*oUomical Results

Observational speckle interferometry is now over a decade old, and
approximately 80 papers primarily concerned with astronomical results
have been published, some of which are referenced below. Despite the
enthusiasm of a few astronomers, it is only realistic to point out that the
technique is not widely used or accepted by the astronomical community
at large. Some possible reasons for this are: (i) relatively few objects,
particularly in the visible, are resolvable by 4 m class telescopes, whose
diffrction-limit at 400nm are 0702; (ii) calibration problems make it

iA
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difficult to obtain photometric energy spectra of sufficient accuracy for
the particular astronomical problem; and (iii) only the most expensive
equipment yields faint limiting magnitudes and enables the vast amounts
of data to be reduced.

The summary of astronomical results given below is divided into four
parts; solar system objects, binary stars, single stars and infrared objects.
In addition to these, some more unusual objects have also been observed
using, speckle inaerferometry. For example, HO er aL [7.731 resolved
one of the components of the "triple" quasar PO 1115+08 as a binary,
one of the faintest objects studied by the speckle method (in, = 16.2). The
Seyfert galaxy NGC 1068 has been observed in the visible [7.159] and at
2.2 Am [7.174J, both results revealing a nuclear core containing most of
the luminosity.

7.6.1 Solar System Obecs

The angular diameters of the asteroids Pallas and Vesta were measured
by WOpmEN et aL [7.54, 175, 176], the results for Pallas indicating some
elongation of the object. The diameter of the planetary satellites Rhea
and Iapetus [7.1761 and Titan [7.177] have also been measured.

Observations of the planet Pluto and its moon Charon are near to the
limiting magnitude of speckle interferometry, their magnitudes being
approximately 15.3 and 16.9, respectively. ARNOLD et al. [7.178] estimate
Pluto's diameter to be 3000±400 to 3600±400km depending upon
whether limb darkening is incorporated in the modeL This is slightly
smaller than that measured by BoNz uu and FoY [7.1791, 4000±400 km
with no limb darkening, who also estimate the diameter of Charon to be
2000±-2001km and propose a revised orbit for the moon. Both results
imply a mean density of Pluto (and Charon)=0.5 g cm- 3 .

The Solar granulation has also been measured by speckle in-
terferometry [7.180-182); the main technical problem here is the absence
of any reference source for estimation of the speckle transfer function.
Image reconstruction techniques (using the Knox-Thompson algorithm)
have been applied to solar features [7.182].

7.6.2 Wlary Stas

Speck interferometry has been most successful when used to determine
the ank, tar separation and position angle of binary stars. McALsmn
[7.183-188] has reported over 1000 measurements of resolved binaries,
and 500 binary stars unresolved by the speckle method [7.189, 190], as
well as a number of detailed studies of individual systems [7.191-198].

II

A.
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Several hundred observations have also been reported by three other
groups [7.7, 45, 199-206]. Several reasons have contributed to the
success of speckle interferometry in this area; the measurements are
amongst the simplest speckle observations to make, can be made rapidly
on brighter stars (McAisT [7.207] reported 125 to 175 observations
per clear night) and yield an accuracy far exceeding visual observations.
MCALis [7.207] mentioned typical errors of 0.6 % on the separation
and ±2

° on the position angle, although other groups gave more
conservative error estimates [7.201].

In principle, the fringe visibility can be used to estimate the magni-
tude difference of the two components of a binary star, but this requies
proper calibration of the system using a reference star. MORGAN et al.
[7.199] have built doubly-refracting prisms and a polarizer to enable
artifical double-stars of known magnitude difference to be recorded for
calibration purposes. It is typical of the gap between the theory and
practice of speckle interferometry that the measurement of 4m, which is
so sintple in theory is, in practice, elusive.

The aim of making binary star measurements is usually to estimate
the masses of each component. For a double-lined spectroscopic binary
(Le, one for which the radial velocities of both components are known) a
minimum of two measurements of the angular separation and position
angle yields both the masses of each component and the absolute
distance (parallax). One example measured by McALLS'ER [7.193] is 12
Persei; the masses are 1.25 ± 0.20 and 1.08 ±0.17 times the mass of the
Sun and parallax is 07046±07002 which combined with the known
apparent magnitudes gives absolute visual magnitudes of 3.8 ±0.1 and
4.1 ±0.1, respectively.

Binaries that are both double-lined spectroscopic and resolvable by
speckle interferometry are rather rare. If the binary is single-lined, then
speckle observations cannot unambiguously give the individual masses
and distances. However, if masses appropriate to the spectral type are
assumed, a distance can be found. McAiatsie [7.192] and MORGAN ct aL
[7.201] have applied this to binaries in the Hyades cluster, a distance
marker in the universe, to confirm that its mass-luminosity relationship is
normal and that its distance is approximately 10% greater than the
original proper motion studies indicated.

Bc xns [7.208, 209] has suggested a modification of the speckle
technique called "differential speckle interferometry" that may enable sub-
milliaresecond separation of binary stars to be measured on a 4 m class
telescope in the visible. The technique uses the Doppler shift and
observation at two closely spaced wavelengths to modulate the position
of speckles in the short-exposure photographs; since the speckle pro-
cedure measures shifts to an accuracy of a fraction of the speckle size,
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resolution of binaries whose separation is much less than the diffraction-
limit may be possible.

7.6.3 SInge Rmolvoae Stus

One of the first stellar discs to be resolved by speckle interferometry was
the supergiant a-Orionis (Betelgeuse) [7.7] which has subsequently been
observed on several occasions [7.124, 125, 203, 210-212], including the
first example of a map of a star apart from our Sun [7.124]. Whilst there
is evidence for substantial limb darkening on z-Orionis, the speckle
energy spectrum provides rather low quality data for comparison with
models. Measurements reported by Goldberg et aL [7.212] at H,
wavelength and the neighboring continuum reveal a mean diameter of
0'060 with an unresolvable bright feature near the SW limb in the
continuum and significant H, emission at large distances (radii exceeding
0.25). The diameter of the giant star ,-Bootis has also been estimated
[7.213].

Several Mire variable stars-o-Ceti (Mira), R. Leo and X Cygni
[7.210, 214, 215--have been observed by speckle interferometry. These
results indicate that Mira-type stars probably have smaller diameters
than was previously supposed.

Finally we note that the first results of long-baseline two telescdpe
speckle interferometry have resolved the individual components of the
binary star Capella. yielding values of 5±1 and 4,±2x 10- 3 arcsec
[7.216].

7.6.4 Infrared Stars

Although infaed speckle interferometry is at the moment still restricted
to a single detector across which the image is scanned, many interesting
measurements have been made. This work is likely to expand when array
inared detectors become available.

The diameters of several protostar candidates have been measured,
particularly WS-IRS 5, MonR 2-IRS 3, S 140-IRS I and the BN object
[7.169, 171, 217-219). MCCAATHY's measurements of the triple nature of
Moor 2-IRS 3 [7.2191 are a good example of the results possible with
careful data analysis. The bright carbon star IRC+ 10216 has been
observed both the continuum and in the CO lines [7.220, 221]. Several
Mira variables [7.171, 220] and the dust shells around Wolf.Rayet stars
[7.222] and the supergiant z-Orionis [7.169] have also been observed.
The star T-Tauri, after which the class of T-Tauri variable stars is named,
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has been shown to be double [7.223:]. Finally, object restoration via
the Knox-Thompson algorithm and image enhancement techniques
have been applied to the extended object ~P-Carinat [7.224].
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Photon.correlation experiments have verified the theoretical prediction o Baltes et al [Opt. Acta 2., 11-28 (198)1
that a phase grating hidden within a diffuse medium may be detected by correlation measurements. By extension
of this theory to the space-time domain we have additionaivy verified that a simple and more reliable method of
detecting the grating, valid for arbitrarily fine diffusers, is possible by temporal autocorrelation measurements ot
the scattered field at a single point. This method is shown to yield detailed information about the deterministic
and stochastic features of the source and the source plane motion.

1. INTRODUCTION there is a close analogy between speckle and coherence. In

This paper investigates the use of coherence properties in the present case the terminology ofeithe may he used equally

detecting the presence of a phase grating that has been ob- well.

scured by an optically diffuse medium. A theoretical analysis
and complete experimental verification of two detection 2. GENERAL THEORY
methods involving photon correlation techniques are pre- Measurements are made in the far field of the gratingtdiffuser
sented.

A recent series of theoretical papers'-
6 has shown that the plane Isee Fig. 1). Coherent illumination of the compound

spatial period of the grating may be determined in such cir- source produces in the far field an array of diffraction clouds

cumstances by correlation (coherence) measurements of the centered on the grating diffraction orders. If the diffuser acts

scattered radiation even when a simple intensity measurement as a deep random phase screen ( or scatterer), the angular in-
tensitv distribution of each diffraction (speckle) cloud is adoes not reveal its presence. The grating period is revealed Gaussian whose angular wvidth is inversely proportional to the

through the existence of sharp correlation peaks that are
present whenever one correlates pairs of the grating diffraction compiex amplitude correlation length , characterizing the

orders in the far field.
5 The width of these peaks has been diffuser. The far-field angular displacement of the respective

diffraction clouds is inversely proportional to the spatisl pa-
estimated -

' iby usinit Iamplitudei interferometry. The . c t t rstent ., "h.: rrtona aucinodfuescte.rn a a characterizung the grating. The pameter L,'b is then
strenth if their , ianL as a function of diffuse scattering has a measure of the degree of intensity overlap between these
also been measured by using photon-correlation tech- diffraction clouds. For L b ! 0.33. the average intensity
niques." i

An extension of Baltes' analysis is made by allowing the distribution i treei the presence of the graing
diffuser to move with respect to the optical axis and grating.

The spatiotemporal correlation function in this case is seen Theoretical Model
to be a direct generalization of Baltes' (t - 0) result. More heoretia M odelipratythe spatiotemporal analysis provides an entirely We investigate the two-point correlation function of a time-
importantly, tevolving speckle intensity fluctuation produced in the far-field
different and more reliable method of extracting the hidden diffraction plane by laser illumination of a diffuse object
grating period through a temporal autocorrelation measure- ming ith velocity l illumith rfa tofthe optica

ment at a single point in the far field. The presence of the moving wi th velocity v = t vt with respect to the optical

gr3,ing manifests here as a cosinusoidal modulation whose axis and grating. The unit vectors l and 4 define the object

trequency is linearly proportional to the grating frequency a plane in this notation. The diffuser is modeled as a deepfreuen" s lnerlyprporioal o he raingfrquecyand random phase screen whose surface-height probability dis-
the diffuser velocity. The strength of the modulation depends rando pse sr oe surface-heigtobit ds-

boththeampitue crreatin lngt ofthedifuseand tribution is a Gaussian. of standard deviation -T and hasaon surface-heilitdeorrelatin length of the diffuser and
the spatial period of the grating, Therefore the characteristic suaedei hmogenu iestially ionarhe infthe
parameters of both deterministic and stochastic features in statistical sense.

the compound source are easily identified by temporal auto- Using ";vo-dimensioial notation, we express the complex
correlation measurements of the scattered radiation. amplitude in the scattering plane as a product

Previous theoretical work was phrased by using the lan-
guage of coherence theory; however, we use that of speckle UE, 11,t) = P(, q)exp~io(k. q, 01 Tlt, r7), i)
theory since the experiment is concerned with a scattering
problem, not a source problem. It is well knowni_ - 4 

that where

,i740.:;2:1,2,'i404.j40);.(s191)42.0 0 19S4 Optical S.icietv is America
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01 Coi0 = cto ct. q ea er

oorca fiber is the explicit time dependence of the random phase.

A For computational. simnplicity~ we expand the grating

0,. - PMT transmission term in a discrete Fourier series
grfig ser

- yi. . LAN. LY exp[ia sin(2c/bl] = gexpiin2,rcb). 421)
CORRELATO+ CORRLATOR where g, = .1,i, i, is the Bessel function of the first kind with

.---. , argument a (a is real and nonnegative).

PM The correlation of complex amplitudes is defined as

COMPUTER P(xiyi; ,y, r= (Ux,v,.tU(x_,vt+ rJ), (3)

where (0 denotes an ensemble average. As is well known, we
Fig. 1. Experimental arrangement. may express the far-field complex amplitude U(x, y., 0 in

a.W [ terms of the source plane complex amplitude U(c, i1, It by
i.m t means of the Fresnei-Kirchhoff diffraction formula. Since

Il measurements are made in the far field of the gatingidiffuser
plane, the simplifying requirements of Fraunhofer zone dif-
fraction are assumed to be satisfied, that is.

ka > 1. 13a)

..®i, \ 15R >> ka2
, (3b#

where k = 2-.X is the laser wave number and R is the distance

from the detector to the source plane. The far-field correla-
0. 0 tion of amplitudes may then be expressed as a fourfold Fourier

I A transform:

O( 1,Y1,X2.Yo)f

_ - .... ri .

Xepf- (X I I - X o + Y1 771 - Y2 '12 (4)
0.(xp7- XR , _-d

_ss where we have ignored the unimportant phase factors and
1 0.4 Cscaiing constants. Evaluation of Eq. 14 requires that we first

3.3 ,, evaluate the correlation of complex amplitudes that are due
to the diffuser. namely.

0. ,3 -0.3 10 XS C3 .
... -. M , A ,

-c . 4 ¢; c o.ha, . ol

Fig..2. Theoretical plot of the average intensit distribution is the If the diffuser satisfies our initial assumptions and is in ad-

far field of the grating/diffuser combinations: a. Lib 1.0. b. Lib dition optically rough. 7,, X. it can be shown
1 5 

that the
)5.ancLb-0.33. L \isthe eeacorrelationienthofthecoto- correlation of complex amplitude transmittance is approi-

pies amplitude transmittance of the diffuser and b is the spatial pe- mately Gaussian of width equal to L:
riod of the sinusoidal phase gratingl.

P4 . rip is a real pupil function, (expli[lj i. rij, t ) - OC, 12.. t + r11)

q. t') is a time-evolving random phase that is due to the expl-[(i - C2 c - r- + (IN r/ 2 - -2)
2
-I2Ll. (5)

diffuser. where

TO
c
. 'II is the sinusoidal phase grating transmission.

L,1,1rn - lOs , ,\i

In our case
and n is the bulk index of refraction within the diffuse medi-

P) . '7 =, [ "exp(- + 77-(i4a0, um. The limit ofa delta correlated source L - O) often used

where q is the laser-heam radius in the literature yields a correlation of complex amplitudes
T, ?' = explia; sin 2ir,/b)j, (Eq, 14)1 that does not depend on the deterministic source

plane phase: rather it depends oniv (in the source intensity.

where; is the efle'::ve -ptical depth and b is the spatial pe- This Joproximatnon Is theretore insufficient for our purnoses.
* rI,~7 ,I :he Iroain-i wi:t1 The i ,lure ,rreilt.,i! -, .:'-mnp: ex in':)ittude .e .:

kA
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Li~.'7,ti~~~.'7~t +~i'3. EXPERI.MENTAL PROCEDURE

e I I-+: t - F YI- '~-. L, I-1' The experimental setup is shown~ in Fig. i. C,,rreiacion
eap' ~2L2j measurements are all made in the far field using standard

x [Pc, njlT'cj,jIPc, 17M2- 16) photon -correlation equipment. The detectors consist of thin
optical fibers of 50-urn core diameter coupled to Hamamatsu

A simple change of variables proves quite useful here. By R928 photomult ipliers. The signals are passed through a

defining the sum and difference coordinates preamplifier/discriminator and the photon counts analyzed
by a Langley Ford correlator that estimates the correlation

so I C + $.l2.2 Y~o = l'7i + Y1.2. function with 1?S-channel resolution. each channel corre-

= C - C2 '7 = '71 - 172, sponding to a time increment At-. Typicai time increments
I I I used in our experiment were -I- = 50--2U0 ktsec. and photon

we fin thatrates of approximately one photon per.1r or 5 x 103-2 X 104
sec-', with a dark count of approximately 100 sec-'. Typical

[P's. ',)TE,)[P12, 7..T1~)1~measurement times were 10-20Osec (about 10-5 samples).

-= g~g,,'expi-tc
2 

+ sj2)i~a-Iexpfi2,Trn + ml~cb Measurements of the spatial cross correlation of intensities
'' in the so-cailed antisymmetric scans (sin 0, = -sin 0 = X/b I

Xexp[-(,c0 + '70
2

/2a
2

expi2;-r n -mcb. 1) are estimated from the temporal cross correlation at zero time
- m)~,.bI-delay.

Equation (41 now separates into four closed Fourier inte- A'series of diffusers was produced in photo resisL Multiple
grals. and a straightforward calculation shows that exposure of these plates to different speckle patterns and

subsequent development yields an optically rough surface
rts. a. 0.0.7= exp)-It - - whose surface-height probability distribution is approxi-

-1[ -i2-,.v~r (. -n + m l mately Gaussian. teit The standard deviation orh of this
b_ g x u,/5ii 0o distribution and the surface-height correlation length lh of

n- \21 each diffuser are measured by using a Dektak profilometer
" exp -'k a - tn - rni7 (mechanical stylus~device. The resulting value of the corn-

I- 1 0plex amplitude correlation length L is then determined for a

" xp 1 '2" [ s - m) 4 n + . (8 particular wavelength by Eq. 151 whenever r-,, >_ X. The re-

eap-. 2-. ~ "~n fractive index n of photoresist is approximately 1.67 at the

where He-Ne wavelength X = 633 nm. The diffusers used here give
correlation lengths of L -0.9. 1.4. 2.3,2.7. 3.3.6.4, 7. 1, and 10.3

Xt + x. sin 61+ sin6, JM.

2R 2 Two thin sinusoidal phase zratinga of spatial periods b=
.5.1 and 9.2 gmr were produced holographically by using Kodak

and 131-02 holographic film. The optical depth of the grating-,

~X n~ - sin was estimated from Standard intensity measurements, and

R

are the angular sum and difference coordinates. sin 0, = .\b

is -1he first zr3E~nir diffraction order. and we concern ourselves 1.-

here univ with correlation measurements along the far-field
x axis: hence v, 2 0. _

Photon-correi.tion experiments do not measure r directly; -

rather they are capable of measuring a related quantity. the 0.

correlation of intensity fluctuation, whose normalized form08
in one-dimensional notation is

fi(X, :)114X2  + 7t)) .
Ji(xi.0))I ([(X"0))I

'0.4

where I(xj,,i = LUxl ,.f'xi,tn.'.
If L'a << 1. the far-f ield speckle has Gaussian statistics SO

:hat !ne intensity and amplitude correlations are simply re- :22

C I IX,71., )1,0 0.1 .2 0.3 ).4 0.5

r rLZ, x1 0)1 r(x 2, x, 5) 1AfX10 RD

10) Fig. 3. Experimental measurement of the angular wivdth of the
crass-correlation peak in the antisvmmetrc scan. - 2.\,b + Aia

where ix* . rir is :7omrnniv rermed thecnrnpiex desxreeof versus Air. The I/e width if this peak occurs at A,~ '6 X IV'~
-. rads, which is approximatelv equal to I;kn. where, a. '. m is the

'inerencearod saisez by virtue ,f he Schwarz He-Ne wve number nd .i = -' -.
2
m m is i eSC -anr 1.

:lequallitv. s 12 ir this meisurernen,

.4
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both gratings used in the experiment had an effective optical 1.30
depth of a = 0.S.5. The values of the first four Fourier coef- 0190

ficients are then

go a 0.826, ,80

g, a 0.385, 0.5
g2 a0.08. O. 

" /

g3 a 0.012, .o0
=--0,20 ,

The experimental error associated with a is less than 5%, a, iS
whereas the error in measurement of the amplitude correla- - .0 0.20 o.4 0.60 .0 .. 1. 20
tion length L is in the 5-10% range.

A precise estimate of the spatial cross-correlation peak value -. ExK IMNr 4/b

in the antisymmetric scan is made difficult because of the Fig. 4. Peak vaiues of the intensity cross correlation measured at
sharpness of this peak. as shown experimentally in Fig. 3. angles i-OD, 00) as a function of L/b Isin do a.\/b I.
Great care was taken in aligning the detectors, and measure-
ments were repeated on several occasions with consistent re- 1-6 and has a number of interesting related properties. The
suits. The sharpness of this peak may be appreciated by average intensity. defined as nxi,,xi) % rts = sin 8,.a = 01.
considering our arrangement. For a laser beam width of 2a exhibits broad peaks centered on the far-field grating dif-
a 0.66 mm and wavelength X a 633 nm. the angular width of fraction orders sin 81 = nXb. The angular width of these
this peak has a predicted values of I1/ka a; 3 X 10-4 rad. For peaks is approximately equal to IkLr'1. The amplitude cross
R = 2 m. a 0. l-mm alignment error yields only 90% of the true correlation in the so-called antisymmetric scan.,

5 
rix i. - x i

correlation peak. and this peak vanishes whenever the net =" r(s = 0. a = 2 sin 01I. is sharply peaked whenever sin 0: =

alignment error exceeds a speckle diameter, which in our case -±n X/b. i.e.. whenever one correlates palrs of diffraction orders.
is approximately 2 mm. The angular width of the correlation peaks is approximately

The diffuser translation was effected by a continuous equal to tko I and is narrow compared with (kL)
- t in sit-

rotation in the It, q)t plane. The diffuser's relative component ustions of practical interest.
of velocity parallel to the far-field x axis. u, is equal to 2rar,. We now examine in detail a correlation of the ! I diffraction
where r, is the vertical displacement of the laser beam with orders, sin 01 = -sin O., = ,\b (thus r = 2X/b. s = 0 in our
respect to the center of the rotation and s1d is the angular notariontj. Direct evaluation of Eq. (11) appears to beadif-
speed of the diffuser. The relative velocity v, is then equal ficult task in this case: however, because of our particular
to2aswdr;. where r: is the horizontal displacement. [t is un- values of the Fourier coefficients g. and the fact that a/b >>

derstood here that the diffuser plane t , qi) is perpendicular 1. it is shown that -y 0. 2X/b has a simple form,
to the beam axis at all times. In particular, note that the term

For measurements involving only one-dimensional trans-
lations tI! = vc. (v, - 0). a variable-speed linear translator was expl- 1

/2k
2
a2o - In - mX/b]21

used that allowed for accurate measurements of , and henceha ex{ 
2

,s
2

the modulation period assa function of bi I .. = exp- 12 - In - Mnt1
2
1

Experimental vaiues for rne modulation strength of the

beats in the autocorrelation function were made with a pencil
and a ruler after obtaining a hard copy of the correlator out- for T = 2A/b. Thus only the terms n -,n 2 contribute to

put. It ;would not be difficult to measure these quantizies -he sum. Further. if the optical depth of the grating sat:sie€s

eiectronicaily as the correlation function is being processed. 0 : a 
< 1.5. it is seen that the Fourier coefficients g, - -J :.i

This would reduce the total measurement time to a few sec- are a rapidly decreasing function of n. For our case. a =0.85.

onds and therefore might be practical as an information- only the terms n = 0. ±l. +2 contribute significantly.
coding scheme. Therefore to a high degree of accuracy we may express the

normalized correlation of complex amplitudes as

4. SPATIAL CORRELATION AT ZERO TIME
DELAY 0 2Vb)

For zero time delay, r = 0. the complex degree of coherence, 2gj 2exp-2.
2L

2
'b

2
l - 1gl

2 
+ 2gg expt -.5rL

2 b2)

or normalized amplitude correlation function, is given from 1gi 1
2  (1g,1

2 
+ 1g, 

2 )expt-2 '2 L2 /b2 )

Eq. oS) by -12)

r ,. .,,,exp 1. m 1 -'I2 zk L[ -i n m inXj

I e-p [Z2jL is + a,2 - nl.\/b)21 Ig l~exp -_ is a') - n.\ibtjf'

where a 1-,2 sin".. - r/2 = sin 0,, and we have made use
t the iact that a, h -> i in evaluating the denominator. There
is n toss t .4eneraitv iere. as a/b >5 I for all situations of where 2,,'. -! '.... = -o 'or ;inificant places. 'T1is

:r., - i :i , re-i. r:.' .. :' resi.n , is i rst derived :n Rets. :s due he .,eneraii ro-ii i hat
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where is Elhe normalized version oi Eq. 18) with time delay
0- _ h~zj.,...~~i- 2 J",Z iI..,_,iz)in >. andi 7/ 2= j ~ s- 2 = sin 0)., as before. W

again restrict the far-field analysis to measurements along the

The minus on jg,1
2 

arises from the fact that J...,o x axis yi N . 0): however. one should recall that the dif-
Il~j~i and has the ph 'ysical interpretation here that the fuser has a linear velocity v = v-11 + chi) in the object plane.
+1 diffraction orders are antiphased. We see that ly0(. where is parallel to 1 and 4 is perpendicular to i. The
2X\/01 - [ for L~b - -. which is the extreme coherent limit. spatiotemporal correlation of intensities is

l y s a!. an1 2  
= x ) I .. 4 oI b [s s in 00  - '! n + rn ) 1 2

lg12e- )-i a12 - n/b)
2
j lg,"exp (---s - 7/2 - n 121b1

t14)

and 1 0. 2X/b -0 for Lb - 0. which is the extreme inco- For -,> 0. the normalized correlation of amplitudes vrs. 7.

herent limit. A plot of the normalized correlation of inten- riisacomplex function: hence in evaluating j-y' 2 both real and
sities in the anisymmetric scan liyO. 2A\/b)I

2
against the pa- imaginary parts are relevant. The numerator in Eq. 114) is

rameter Lb is shown in Fig. 4. The experimental agreement seen to have the form
is seen to beexcellent. Note that. forL/b :E0.33. the farfiteld 1 a.S q.ru) 

2 
=expi - I '-.'4a 2) 111 A_ i~,s. or

intensity distribution is completely diffuse 'see Fig. 2),
whereas correlation measurements reveal the presence of the
grating for all L.b : 0. 15. Hence there is asmall but impor- x coswi s i-1 + I EA_ is. orisinfcci s r] 

2
:, 151

tant range of values 0. 15 :S Lb !5 0.33 for which correlation whr
measurements detect the presence of the grating even when whr
simple intensity measurements would fail. i.e.. when the in- A". (s l99 x l [ " " - n )X2
tensity information is hidden in speckle noise. ~ s ,.,,x~-§ - b U

It should be stressed here that the curve in Fig. 4 depends
critically on the Fourier coefficients g, of the grating. The X exp ~.k 'L -, n)

range of values of L b for which the hidden periodicity may b1
he revealed by either correlation measurements or interfer- where

omecry3 will thien depend on the particular choice of phase rLI. n m
grating and must be evaluated from EQ. -1l in each case.Am WnM, (s) L VS/Sin On - n Ir
exampie of this effect using a iamellar phase grating that b 2

nullifies the even diffraction orders was worked out theoret- and sin On X/b is the first grating diffraction order.
icaiiv by Baltes

5 
and has similar characteristics to our case. The spatiotemporal correlation function has the usual

In principle, an amplitude interferometry experiment will Gaussian envelope!" of width t,) a 2a. l within which~ are a
vietid larger range of values for which the coherence efifect series of har mon ic-scilla tions. For the case ot an intensitv

:s .,oticeable because interferometry measures directlv. autocorrelation it is shown that the mou.iation of this

xnieress photon correiation experi ments measure 12 o Gaussian envelope is entirely cosinusoidal and is neaxtiy

ieat'ied exp-ertnen: .sion% these ine4 -is vet been~ re- weighted in favor of afundamental Creq'ierc. ~
ture.An autcorreiatiun it intensities is Oetined .5, -f~. x i. -

a-is = sin 51. aT = 0,). Since a, b >> 1. we find that

5.SAITEPRLCORREL4TION .4is 0) a g~ x 14 2L2 - in +m .1I

Our experiment is capable of measuring the spatiotemporal '16)
correlation function of dynamic speckle intensity tluctuations. where s =- sin 0 defines the detectiion location on the iar-tieid
We therefore present the time-dependent features of this raxis.
quiantity here. The normalized correlation of intensity By defining
fluctuations is defined by vL 2

.'...r 
2  

=i 21 1 2. 5 . b.n.5  a 2.1, 'ir - *s,2. 0. ofl
K ;5ii 510i, sin ')'sin 4I,,

we now express Eq. 114) ;n a more transparent form:

I 'I ig, 
2
expj-q-'1K - ri 2

!cosIwniK - n 112' + I Zlg, I -exp1,-q-iK - n i2!sinjwir i K' - nil I

hsi. 0, ri 2 expi uI~'r 4a2 )

d,, Iexpj- - n 112!
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.0 I^tures. We first note that. for -I < K < 1. Eq. (18) is sym-
a 0.10 metric in K 'i.e.. in 0 1. as might be expected, and has the

0.so general form
jofs. 0. . )!

2

0.60

0.5O4 expI-ic
2r" 2

/4a
2

)[Alq. Ki + B(q. Kicost.cr)]

o.o Alq. K) + B(q, K)

0.20 where
Sa.to

A -- (q. K) = A(q. -K).a. 3E -000 2.5E£-00?2 S. CC-002 7.5 E-002

t (SEC) B(q, Ki B(q, -K).

and the explicit definitions of each are self-evident from Eq.

1.00 Thus the autocorrelation at any' point along -,\/b <- sin 4

&. T0.90 - ,/b consists of a Gaussian envelope of temporal width to =
2a u modulated by a cosine of period 

t
M = bitc. where v, is

.700 the diffuser's component of veiocity parallel to the far-field
.as0b x axis. Whenever to < to and Bq. K) > 0. this modulation
0.40. clearly presents itself in routine autocorrelation measure-

0.0 3oments. as shown in Figs. 5-7. The remarkable feature of Eq.

a. k (18) and hence of Eq. (19) is that the period of this modulation
0O. 10

0.OE-000 2. 5E-002 5. 0-002 R--0-02

TWO (SEt) 0
Fig. 5. Theoretical plots of the temporal-intensity autocorrelation ,
at the center of the diffraction field is = 0. a = 01. The diffuser ve-
locitv is v, = 1.8 mm/sec. and v. = 30 mm/sec. The amplitude cor-
relation length L - 2 um. and a. b - .5.1 Am: b. b = 9.2 gm.

We now restrict our attention to the case -X/b a s _ ,/b. t
That is. we consider an autocorrelation at any point along the
far-field x axis that lies within the ± grating diffraction or-
ders. The results obtained are. in fact. quite general. and this
merely serves as an illustration of the spatiotemporal behavior ,
in a particular spatial domain. Recollecting that for our case
g,-: >>AI >>!g_ ... etc.. it is cleat by inspe.tion of Eq. (17)
that only the terms n = 0. ±1 contribute si!niftantly when- T (SE

ever -i - K S l and Lb 0.05 li.e. q
2 

> ,.) With the

above restrictions in mind. a little algebra shows that

,1s.).O711
2 

a expi -L.-'4a-),.ViK. q)

x [ga expi-2q'K
2
) + g,,expj-2q(K + U.

2
1 ,

+ exp -2q
2
1K - 1)2II

+ . glzgjj'expl-q-'[K + 'K + 121)1

" 2exp)-q-K
2 

+ 'K - I its))cos ri. IS)

w 'ere ""

.Vi-K. q, = ,. ,exp,-q!K-I

+ 'gH!expj-i-i4K - 1l + exp(-u&IK - I)211)2

is the normalizatitn as a function f K and i.

taretui manmuiatin of Eq. 17 shows that the inclusion jtS.
of higher-order terms atgain introduces cosinusotdai Modu- T (SEC
,ation whose trequenctes are integral muinpIes of .o. Because
of exponential damping and the Ftourier ciiefficients g_ Fig. 6. Experi)ental measurements ot'he intensitv autocorrelation
however. all such terms are smail corrections and may be function at the center of the diffraction field is - 0. a - 0i. The
safelv dropped in this case. diffuser velicity is -' = 15 mmisec. t, i) 'pure translation along" )

Equation I18) t hereiore nct'rp,,rates all to- relevant dy. The diffuser has an amplitude correlatin length of L a 0.9 um. and
a. h 9.2 Mm: h. h-- I im. N e that he persod t ,.iilaon 'aries

tlaotni leatitres of the i oltenoiiral aut,',rrelation mea- is ,i . li .i tie, tee ,'i iillt it 'he Anilinitmdmj -t; r. tn
tirvimtirii. it oxier-nitit-i ti (: -mit t i e mt ere'titi tea- reise- 1 . , .l 

,

)"I



D. Newman and J. C. Dainty Vol. 1 No. 4;April 1984/J. Opt. Soc. Am. A 409

For fixed diffuser velocity v. Eq. 1S) enables us to measure
I the spatial period o of the grating by a simple measurement

* .= of the modulation frequency x, = 27,L'!.,b. T"his frequency
. i, _clearly manifests itself as a series of equally spaced fringes

within the Gaussian envelope, as shown in Figs. 5-7. For fixed
& and K. Eq. 11St allows one to measure the scattering source
term L by an equa:ly simple measurement, that of measuring

the relative strength of these fringes.
Figure S shows theoretical and experimental plots of the

modulation strength Stq. K) against Lb for fixed scan angles
K = 0 and K = 1. In both cases the modulation strength
tends to zero for L, b > 0.5 and increases dramatically for Lb

. e-03 z. OE-03 < 0.5. although at very different rates. Figure 9 shows theo-
rco retical and experimental piots of the modulation strength

Fig. 7. Experimental measurement of the temporal.intensity au- versus scan angle K for fixed L/b = 0.1S.0.25.0.30. [tisclear
tocorrelation function at the center of the diffraction field is = 0. a from the curves, and the excellent experimental agreement.
= 0i with parameters L a 0.9 um. b = 9.2 am. a = 0.33 m. v a 50 mm that the modulation strength is a sensitive measure of the
sec-:. va .560 mm sec-. Note the modulation period t, a 1.8 x degree of intensity overlap Llb and therefore allows one to
i0

-
isec.and the Gaussian enveiope has aIe timeof .. = 1.2 x 10-1

sec. as predicted by theory, estimate L for a given b to a reasonable degree of accuracy.
Figures 6 and 7 show experimental measurements of the

.0o, period of these modulations. The period is indeed seen to be

0 proportional to the compornent of velocity parallel to the far-

o field x axis. whereas the Gaussian envelope has a width pro-
0- 'l 0 f.0

0.! \
0.50 \ 3i o.=

C.u 30!
1 . - .

0a

L I

3. aO __,_______" _____-_____._____

0.30-

Fig S. %loduiaton strength as a functionot intensiry overlap L. h No:
it totea scan anive: i..K" - 0: o. K = .The soiid curve !s a theoretical -=C =
:) ,i: tn e - 'A reter !o exoeri rental m eas urem ents._ :t. ,

,-nutreiv independent .)t :r.e , 'etect,er location. The detector 0=

•, aton K and zhe overtap parameter -,, along with the Fourier l= =
::icienus ,,, determine (he itrength of"the modulation that .
'ai-ne lhere as=

30 ,,. 2.60.,.. ,.2,/ 'u 0

Siq K1 K..41 . K1.t 01 Fiji. 9. Modulation strength aIs a function of" scan angle .K'
- in 0. 1where bin s, - \ hi tor i-Ned )%erlap parameter L. b -a.,) IS;

"' a" ro l ," e :molitude trengnh he .- ,id ,-r reler : ,hei=rv. the - , reter ,i ex-
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portional to the total diffuser velocity li4
2 

+ V 2)1
,
2

. 
For CONCLUSIONS

our experimental parameters a and b. it was necessary to have We have verified evperimentally that the presence ot a

LC < L, whenever the full Gaussian envelope was to be ob- nusoidal phase gracing of period b hidden behind a diffuser
served with fewer than 10 full periods of modulation. We are of correlation length L can be revealed by measurements if
limited here by the 12S channels of correlation data in our the spatial-intensity cross correlation oi the scattered field.
resolution. Figure 6 shows autocorrelation data for a pure cnimn h hoispeetdi es -. B xeso
translational diffuser velocity I cj = t,

5
. v, = 0 and confirms our contirming the theories presented in Refs. a-6. Bvextension

" of this theory to the space-time domain. we have confirmed
analysis that the modulation frequency varies as ub to a high our own analysis that the hidden periodicity of the grating is
degree of accuracy, more easily measured by a temporal autocorrelation of the

dynamic speckle field. The presence of the grating in this case
6. PHYSICAL ORIGINS OF THE manifests itself as a cosinusoidal modulation within a
MODULATION AND COHERENCE PEAKS Gaussian envelope. The period of this modulation is inversely
Figures 8(a) and (b) show how the modulation of the Gaussian proportional to the spatial period b of the grating. It has been
envelope exp(- i -ro /4a) increases dramatical for Lib < verified that this effect is easily measured for highly diffuse
envelope eaIaIy d icreaes ramaically forbThis a fields Lb t by using a single detector with minimal de-
0.5 and essentially dissppears for Lib > 0.5. T"i may iemlds on the spta oretto<ftedeetrncnrs
understood by considering a diffuser correlation cell of linear mands on the spatial orientation of the detector. in contrast

dimension L traversing the phase grating of spatial period b to the spatial cross-correlation method.

and noting that the phase grating is uniform in the i) direction
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REF. I I

Variable threshold discrimination in a photon-imaging detector

Thomas Gonsiorowski

The photon statistics of a particular photon-imaging detector are studied, and the conditional probabilitv
or photon counts in the output given a certain number of counts in an associated reference channei s de
rived. This result is applied in a variable level discrimination technique which significantly reduces detec-
tion errors approaching the ideal limit. These results can be applied to other photon-limited detectors i th
nonideal pulse height distributions.

I. Introduction images are statistically identical. i.e., each image con-
The photon-imaging detector which we are currently tains the same average number of photons. We do not

constructing is a modified version of the device first ignore the aberrations of the optical system but simply
described by Papaiolios and Mertz.' We have named assume that the image spot can be represented by a
this device the Space-Time Analysis Camera (STAC). Gaussian point-spread function.
The STAC is designed to detect the spatiotemporal To encode the image spot location, a high-contrast
coordinates of a photoevent. i.e.. the interaction of a binary transmittance grating is placed over each image.
photon with the photocathode of an image-intensifying The period and orientation of each grating or mask are
tube. Before embarking on the statistical analysis of chosen to encode a particular bit of the digital photoe-
the STAC, we describe its operation. After presenting vent coordinate. Eight masks are used to encode the
some general results in Sec. II we will consider a stan- x coordinate and eight are used for the y coordinate.
dard approach to photoevent discrimination using a The finest mask has a period about equal to the FWHM
fixed discrimination level. Finally, in Sec. IV we con- of the optical point-spread function and the period then
sider a variable discrimination technique suggested by doubles in each successive mask up to the coarsest mask
Papaiolios 2 which improves the detection statistics, which is half transparent and half opaque. The four

The STAC consists ot five major components: (1) coarsest masks are shown in Fig. 1. The seventeenth
the image-intensifier tube: (2) the multiplexing optics, channel has no mask and serves both as a timing refer-
:3) the image plane masks; t4) the photomultiplier tubes ence and event trigger, and in the variable threshold
(PMTs); and (5) the 'iscrimination electronics. The discrimination scheme this seventeenth channel also
image tube serves to amplify the optical signal from a serves as a reference for the adjustable discrimination
photoevent producing a pulse oilight containing manv level. To complete the encoding, all light transmitted
photons yet retaining the spatial location of the original by the mask is collected by a photon counting PMT with
photoevent. The multiplexing optics form multiple a fast preamplifier/counter registering the number of
images of the intensifier output face: in all. seventeen detected photocounts. The final encoding step is to
images are produced. each containing a fraction of the decide based on this number of counts whether the
photons emitted by the intensifier. It is important to photoevent fell over an opaque region of the image plane
remember that each image is a small spot of light cen- mask (and hence the digital bit is assigned a 0) or over
tered on the original photoevent location. In the fol- a transparent region digital bit is a 11.
lowing analysis we ignore channel to channel variations It is in this final step that some discrimination must
of the imaging properties and assume that all seventeen take place. The number of counts registered in each

channel will be a random variable with a statistical
distribution determined by the characteristics of the
various STAC elements. The form of this distribution

The author is with Unversitv of Rochester. Institute of Otics. will determine how effectively we can discriminate be-
Rochester. New Yr, i4627. but at the present time is at Harvard tween a blocked event and a transmitted event.

University. Center tr Earth & Planetary Physics. Cambridge. as- II. Modeling the ST.C
sahclasetts 01t38.

Received 19 Decemner t98'. In an ideal system. the image tube would produce a
O003-69;l5;84/07:; 16,S 2-0/0. fixed number of photons in the output pulse for each
C 1984 <'rical Scer'" . America. photoevent. and the optical system, masks, and PMTs
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where T is just the intensity transmittance of the stage.
Another reason for selecting distributions 11) and (2)
is that both are invariant under binomial selection. i.e..
the form of the distribution does not change although
the mean is modified. The transmittance of the mul-
tiplexing optics is T), the masks have a transmittance

* T, which is position dependent, and the PMT
preamplifier/counter combination has some effective
efficiency (transmittance ql. To obtain numerical re-
sults, it will be necessary to choose values for these pa-
rameters: we will use approximate values for our par-
ticular system:

Fig. I. Fourcoarsest masks of the STAC sould encode the four most To I I- . ,40
-ignificant bits or the digital x coordinate. Note that Gray code is

used as opposed to bnar to minimize multibit errors. 7 0-15.

Also. a derived quantity which will appear frequently
is the mean number of counts generated in the reference

would also give a fixed output depending only on the channel. i.e.. without any mask.
event location. In such a deterministic system it would
be an easy matter to decide on the digital coordinate. r, = 7'0 .N) 8.3. 10i

and errors would be eliminated. Unfortunately, nature Although the exact values of these parameters does not
is not so obliging: at best the image tube produces not affect the following analysis. some results do depend on
a fixed number of photons but instead a random num- their relative magnitudes.
ber N with some probability pil. Also, each succes- As mentioned above, we model the optical point-
give stage of the system behaves in a probabilistic way; spread function by a Gaussian function. The mask
if N photons enter a stage. rather than a fixed fraction grating integrates periodic portions of this point-spread
emerging, the number output N' again has some dis- function resulting in a total transmittance T given
tribution piN':N). which does, however, depend on the by
input number. Ultimately, the number of photocounts . ri .
registered in each channel n will also be a random var- , Xf

"-  
l-- 2/dx (6)

iate with a distribution pin): as a result, any decision - x
method which we use to select the various bits in the where x., is the centroid of the image spot. 2% 7 is the
digital coordinate will err for some events, assigning a FWHI of the point-spread function, w is the width of
I instead of a 0 and ,ice versa. Thus. in the real system a bar or space in the mask. and , is an integer. In re-
we must ask. what is the probability of making an error alit. the limits on the sum should be finite since the
in the event coordinate? mask has a finite extent: in practice. however, the

In modeling the system we consider two possible point spread function will become negligible before the
distributions for the number of photons emitted by zhe mask edg -Zisached. Of coiur~e. "his does not appiy to
image tube:, 1) p.\'1 is Poisson, events very near the edge of the fieid. but we will ignore

p , , x. N such cases. To simplify the above formula, we define
-exp-N). l two dimensionless parameters

and 12) piN) is Bose-Einstein. = -' dia 3 nd . = - 7,

I'S "I + .' " Because of the mask periodicity. the normalized event
positions has a fundamental range _; < s s 11:; while

In both cases. kN) is the mean number of photons the mask-spot ratio (x has approximate values of 1. 2.
produced by' the image tube for each photoevent. The 4.... 128 in our system. Introducing the error function
Poisson distribution represents the optimum realizable and using s and a we can write
distribution. i.e.. the realistic ideal case. while the
Bose-Einstein distribution approximates the actual Tjs.a, = ,. v ert2h - - : i- erfl2k - ol.
image tube we are using. The Bose-Einstein distribu- I-
tion can be considered as the convolution of the ideal Figure 2 shows the variation of T, with s for various
Poisson statistics with a broader noise distribution values of Y. For lo% mask-spot ratios (a = 1). the
which increases the fluctuation of the photon numbers. point-spread function covers several mask periods
Each successive stage of the STAC performs a binomial producing a poorly modulated transmittance function.
select:on on the input to that stage But as a increases, the transmittance soproaches a step
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Fig. 2. T,(s.a) plotted over the fundamental range of s for a = I. Fig. 3. Typical variation of bias B and error E itth threshold n, for
4. and 64. the mask-spot ratio a = 2.

B = JE, - Eoli

function. The poor modulation of T,0 for smaller a A we will see. choosing 0i to minimize B will also tend
results in larger detection errors, thus ultimately lir-
iting the detector resolution. to give a minimum E.

From the arguments of Sec. H. we know that pin will
Ill. Fixed Threshold Discrimination be of the same form as p(N), the distribution of photon

number emitted by the image tube. but having a mean
Consider the output of a particular masked channel nb

of the STAC which consists of a series of counts g b
i1,72,... Fl* For each count we must decide the event In = T=k,, 112)

location-was it over a space or a bar? The simplest Once we have tabulated T, vs s and a, it is easy to nu-
decision method is to choose some threshold value n, merically evaluate B and E vs nt for the cases of Poisson
and whenever nk >- n, we assign the event to a space !0 and Bose-Einstein statistics. Note that B and E will
< s < .). otherwise the event is assigned to a bar (- -'- be different for each mask-spot ratio cc. The plots in
S s < O . Since the number of counts nk is random for Fig. 3 show typical results of this analysis. For both
any position s. there will be a probability of incorrectly distributions we see that an optimum threshold which
asigning the event location. Given the probability minimizes the bias or the error exists. Although room
distribution of counts pin). the probability of assign-
ment error is does not permit. inspection indicates that for most

values of a the same threshold minimizes both. The
[p i -n!). for-1 C-s <0: minimum error and bias obtained for each mask is
pin < nC. forO s . plotted in Fig. 6.

Note that. for each vaiue of s and each mask. the dis- IV. Variable Threshold Oiscrimination
tribution p(n) will be different since it depends on the

mask transmittance T,. Having no a priori informa- In an attempt to reduce the probability of detection
tion about the event location, we will assume that all errors, we consider making a second simultaneous
positions are equally likely allowing us to spatially av- measurement for each event-besides counting the
erage the error number of photons in each masked channel, we also

measure the number of counts in an unmasked refer-
Eo - ;pin - ,), for s < 0: ence channel which has a position independent trans-

E, =pin <Cn),. for.s 0: 101 mittance, T,= 1. We hope that the reference channel
measurement will give us added information about the

E ,Eo + E0. number of photons produced by the image tube for a
particular event, thereby decreasing the probability of

In choosing n, we must minimize E. However. there detection errors. Now we ask. what is the conditional
is another constraint; if the difference between E,) and distribution of counts in one of the masked channeis
E, is large. we introduce a bias into the measurement pmnjr, given that we hi-'e measured r counts in the
in that a disproportionate number of events are assigned reference channel?
to either bars or spaces. This would cause a spatially We begin by noting that. if in a particular event the
uniform input signal t.o proiuce a striped output pat- image tube produces N photons C not a random num-
tern. So we must also minimize the bias. which can be ber), the probability of producing r counts in :he ref-
,haracterized by erence channel is just a hinomml distr bution
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forr , N;
for, =, > N -13) Combining Eqs. IS) and 1191 gives

Prlt= 3 -1 -- p -w 
-  

ep - ,2D

Since we also know both p1N) and p-r, we can apply P" , .' .- '1
Bayes's theorem to find pi.\r). which is the distribu- with
tion oi photon output by the image tube given that r
counts are measured in the reference channel. From N= maxn,-i. '221
Baves's theorem. 3  After some manipulation the sum can be transformed

~r pitr .NvlpN. [114) to the confluent hvpergeometric function' giving
P.tr

P inr 
)  

)1
- 3) m " 

expi - miAt'i + -:r -n + j:, I1 - .31, n

3- = expt- , Mln + 1:n - + i:,iI - 3)].

l-.itt - )!

Equation (13), the formula for p(r1N). also applies to To facilitate numerical computation we apply Kum-
the output of any masked channel with r replaced by n met's transformation
and To replaced by ToT,. Given both p(n ,N) and
pi.irl we can find pinfr) from Af.a:b:z: = expz)M.b - a:&: - z. 24)

which reduces the confluent hypergeometrics in Eq. (23)
ptlrl = PInipiVIpINVr'. 115) to terminating series or polynomials:

(I( - V'-1exp- - )ps- -J1M1- : .- 'I :i3 - ill.
n n S<,;pqrzIri a 
L d " °

n> 125)

/-expi - p.3).'3tl- ':n - - + 1:; ,3 - ill
\in - )

Once we have found pn nri we are again in a position to
consider choosing n, to minimize B and E. However, Although this result is exact, it offers little insight to the
n,. is now a function of r, having a different value for advantage of the reference channel measurement. For
each r: but since we know the unconditional distribution our particular system, however, we can approximate the
of counts in the reference channel p r), we can average formula by noting that
over r to obtain a single bias and error figure for each
mask-spot ratio. . >> 

1 3 << 1. and ui I - 21 >> 1. 26

Consider first the Poissor case. where p(N) and p1r) For the confluent hypergeometric function we use an
are each Poisson distributions with respective means asymptotic approximation6

V ' and r,. Ap riing Eq. 141 we obtain rMb)

M qa:b:zT D1 xN-' for I -:, ~). ,271

= xo, ID - N.i). Cor -< R. noting that 
-

= 2 X W- 5. Surorisinely. within this
• for, > N approximation we find

P. nl Ir - expi - : , 281
,16) a

Defining where (n) is given in Eq.) 12). this result being valid for

= - T,, S,. 17 all values of n and r. Numerical computations using
both the exact and approximate expressions show the

this becomes approximation to be accurate within 10-4. The ap-
proximate formula shows quite clearly that. for Poisson

, = ep -1 t.V > r. statistics, the measurement in the reference channel

S- exp, o.ViS) gives us no new information, and thus the variable
10. threshold technique would be fruitless. This result

seems quite reasonable and suggests that the exact ex-
The binomial distribution pi n i.\') can be written as pression 125) should reduce to a Poisson for all values

of a and .3. but we have not proved ths except in the
3 S N limit [Eq. 126)1.

pnl= ,-,
-

, 19 For the Bose-Einstein distribution of photons emit-
r n > . ted hv the image tube. the probability of having N

photons produced by the intensifier given r counts in
where the reference channel is

cri '984 o 22. io. - APOLED ,2P'C '63
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[I . .... for.\ N :.
= t + 1 V ' N,. < r. 29 Ference count-20

+ Mask transmettance-O.75

+0." OC1C odi ied Bose-Einstein

where .M is given in Eq. (17). Now the probability of
receiving n counts in a masked channel when the image +
tube produces N photons is still given by Eq. (19), - + a
thus + a

aI a

3_- an~ir .- oI ) + N' * " + a

where again No is given by Eq. 22). This sum can be + a
transformed into the hy pergeometric function-- resulting + + a

in a conditional probability distribution 0 +++

P =nj 
r  (=  3 1 1 _ 3 )- , L ........5 ---I

n 11 + N)J a0 to Pulse 0count

X F r + ir -n + 1: A1-3) Fig.4. ComparisonoftheunconditionalBose-Einsteindistributon
I + I _] and the conditional or modified Bose-Einstein distribution for r=

,1 A31 + r) )- 20 and T,, 0.75.

pin jr) as given in Eq. (36) is a proper conditional
x F n + 1.n + 1:n -r + I: . n >. 31) probability. Comparison of the exact and approximate

I I + formulas again shows excellent agreement. Henceforth.
As before we can transform the hypergeometric function we shall call the distribution [Eq. (36)] the modified
to a terminating series with the transformation s  

Bose-Einstein or MBE.

F'a.bxc I = (I - z)--Fic - a.C - b:c). t 32) The significance of the MBE is vividly demonstrated
in Fig. 4. which compares the MBE obtained by in-

which leads to cluding the reference channel measurement to the un-
3t h -3 -

i l + r), 'I t ,' (N.W conditional Bose-Einstein distribution. Clearly the
Jn ) = + 4 ...

t  
MBE is much narrower, a result which can be formally

shown by calculating the ratio of the variance to the
x F -n.-,:r - n + 11: l" n : r mean for each distribution. Letting (n,) represent the

I 1+ (.V~j mean of the MBE, we find
( J 4- ri'

+ r
'( +(.)_2 +

k1 + kr) + ,3"1 MBE: n) - I 1 n' -- )
X F + ;t -

1 , >_ r C 33) Bose-Einstein: -1- n = I + ,n. .36)

Using the relations in Eq. (26) we discover that P n)

t , - 134 Poisson: -- 2 1

1 34) (n)
clearly showinz that the width of the IBE is bounded

suggesting use of the relation- by the Bose-Einstein from above and by the Poisson

Fciric - a - b) from below. Thus, including the reference channel
F(a.b:c:D = ric -a)rtc - b) '35 measurement does add information. and we can con-

which is valid for Ac - a - b>0and c sider (r)I(l + (r)) as a quantitative measure of thew h is viFrom Eq. 33. wesee thatc -a - b = improvement.
S .+ o 1q. isalways3positi , wile fr tal c- an - b = To see how much of an improvement the MBE gives.r + it + I is always positive, while for all n and r; c > 1. we consider the error and bias analysis as in Sec. [I. In

With this approximation, the conditional probability this case, however, there is a different optimum
reduces to threshold for each value r and each mask-spot ratio os

pin in + n a t + r)rw'n t36) as shown in Fig. 5. As one would guess, the threshold
n, I I + + 4-) .W)F I rises with increasing r since larger values of r imply

where (n is given in Eq. (12). this formula holding for larger image tube output pulses which also give higher
all values of n and r. Although this result is only an counts in the masked channels. That n, , r: 2 is in-
approximation, it has all the properties of a true prob- dicative of the spatial averaging used to compute n..
ability density and since the averaged transrmittance of the mask is just ,.

Figure 6 compares the bias and error figures for the
pin ,-piri ( - 37) three cases: (1) Poisson 'tatistics with fixed ior vari-

.. q able) threshold: (2) Bose-Einstein statistics with fixed
when ptr) is a Bose-Einstein with mean (r). Thus, threshold; and (3) MBE statistics (i.e.. Bose-Einstein

"064 APPL,EO PC3 . .Z 23 No. 7 1 Aorll 1984
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prisingly results in very small biases fort = I and
2-surpassing even the Poisson case. Clearly. variable

Ratio- O + threshold discrimination significantly improves both
Goo Rat o-I the bias and the error offering performance which ap-

"+ c0 proaches the Poisson tideal) case. This improvement

o ga results because variable level discrimination removes
++ 00 0 the large fluctuations in photon numbers partially re-a c 00 covering the ideal pulse height distribution of the

++00 000 system.
++00 00a +4-+ G 00

,-- 00 00
4. 00 000

4-4 000 000

. --4.00 000

. . . m .. V . C onc lusion
Reference count We have presented a statistical analysis of a pho-

Fi. 3. Optimum threshold vs reference channel count r for several ton-imaging detector which uses a mask structure in the
mask-spot ratios, image plane to encode the digital coordinate of a pho-

toevent. The distribution of photocounts at the output
was derived both unconditionally and conditioned upon
counting r photons in a reference channel. The con-
ditional case allows the use of a variable discrimination

.s, + ++ Poisson level, which depends on the value ofr. That this con-
a Bose-Einstein ditional distribution is at least approximately un-

000 Modified Bose-Einstein changed for the case of Poisson statistics indicates the
04.3i o optimum nature of this distribution. However. for the

0 broader Bose-Einstein distribution, the conditional

I o a though the particular formulas obtained herein may not
+ 0 a apply to other detectors, we feel that the general concept+__ _o of a variable threshold could prove useful in other

photon-counting devices where improvement of the1 7 +pulse height statistics is desired.

0.1 a

Mask-Spot ratio

Fig. 6. Comparison of the three discriminatiu schemes pisented
in the text. References

I- P.palioiios and L. Merit. Proc. Soc. Photo-Op. Instrurn. Enc
3:1. 360 11982).

with variable threshold). In case '3) we averaged the 2. C. Papaiolios, personal communication.

results over r with p(r) being Bose-Einstein. For all 3. .4. Papoulis. Probabifi. Random Variables. and Stochastic
dree cases, the error is very large for the mask-spot Processes 0McGraw-Hill. New York. 1965). pp. 3 and .39.tr at o a s e o th e r o r as k ry tlr e n tt e m o d 4 M. A bram ow itz and I. A .S tegun E ds.. H and book of . athem a:n ca i
ratio a = I due to the poor mask transmittance modu- Furnccions (Dover. New York. 19651. p..504.
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I wish to thank J. C, Dainty and B. M. Levine for their
helpful comments and suggestions. This work was
supported by the Air Force Office of Scientific Research
under grant AFOSR-81-0003 and by a fellowsh'p from
the Eastman Kodak Co.

I April 1984 VO. 23, No. 7 A 0.1D P :L .

-'



REF. 12

Volume 52. number 2 OPTICS COMMUNICATIONS 15 November 1984
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The uniqueness of phase retrieval for two dimensional sampled functions of finite extent is equivalent to the irreducibil-
ity of their z-transform. We put forward a method of characterizing the uniqueness (or non-uniqueness) in the absence of
noise based on a theorem that eves a necessary and sufficient condition for irreducibility of univariate polynomials over fi-
nite fields.

It is well.known that the question of uniqueness of efficients ai1 are not perturbed by noise. This ideal
phase recovery for sampled functions is equivalent to noise-free situation will be useful in those cases in
that of the irreducibility of the polynomial which which phase-reconstruction algorithms are to be in-
represents the :-transform of the object samples [ 1,21 spected for digital objects; since in this case the test
,ai (" 0,1... ,! = 0, 1 of irreducibility can provide a priori information on

m.n the extent of the expected ambiguity in the recon-
,z2) a 5z . (1) struction. Also the study of noise-free cases has an

. =0 interpretative interest of the problem.
Since we shall be interested in distributions (1) cor-

It has been shown that the set of reducible poly- responding to digital pictures, we shall assume the co-
nomials in more than one variable is a set of measure efficients aii to be non-negative in..gers in the noise-
zero [31 and also that irreducibility is stable in the free situation (or even when noise is weak enough to
sense that :z -3 not sensitive to arbitrary but small give no ambiguity as :o the value of the last digit of
noise on the coefficients (4]. the coefficients aq).

The only means available so far of testing for Writing (I) as a polynomial in the main variable zI
uniqueness has been to use many random starts in any with the coefficients being polynomials in z,:
one of the iterative methods of phase retrieval [5,61.
Only for a special class of objects. those that satisfy F(z1 ,z 2) =Pm(Z 2)ZtI +Pm-i(Z2)Zln -  +

"

Eisenstein's [7] irreducibility criterion, has phase
uniqueness been established [8]. Since this criterion +P1 (z 2)z1  po(z,). (2)
puts forward a sufficient but not necessary condition F(z1 , :2) is monic with respect to zI if its leading co-for the irreducibility of (1), there may be many other efficientr(Z2) = I. Fz 1, z2) isprimitive in zI when
polynomials that do not satisfy it that are, however. the p1(z2) are relatively prime. IfF(z1 , z2) is not pnm-
irreducible. In -his letter we propose a method of itive, the content, cont [F), is the greatest common
testing for irreducibility in the case in which the co- divisor (gcd) of the coefficients pizi). The principal

part of F(zl ,z2) with respect to :I is then defined as
1 On leave from: Instituto de Optim. C.S.I.C., Serrano 121. pp[FI =.F/cc,;it[F]. Starting with a non-monic poly-

Madrid 6. Spain. normal, such as (2) with pm(z2) * 1, 1 is always pos.
2 Permanent address: Blackett Laboratory, Imperial College. sible to construct the following moni( aolynomial [9]:

London SW7 'BZ, England.
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)=pm(z)]m-F(:,'p(:),:). (3) sions of a well known theorem of algebra for uni-
. .. .variate polynomials according to which a polynomial

If the complete factorization of the manic polynomial with real coefficients has roots in complex conjugate
(3) into irreducible factors Gk(:! t , z2) is pairs.

r Proposition 2: There is a unique monic polynomial

G(:1 , :2) = R Gk(z ,: 2), (4) F(:I :,) with integer coefficients, irreducible o
ver in-

" k- tegers, with a given factor Fkm[: 1. :2J with irrational

then it may be shown [9] that or complex coefficients, and every other polynomial
with integer coefficients containing the same factor

r F ~klz1. Z. is a multiple ofF%'.1. z:).
F(: 1t , )-2)= (pp1Gk(pm(z)z,-:,)]}. (5) As will-be seen. we shall call F(z:.z2) the minimal

polynomial with integer coefficients containing the
Thus, we may assume in the following that F(:,, z2) factor Fkm(Z1, :2).
is manic in zI, since otherwise eqs. (3)-(5) reduce to Proof: By ordering on the set of degrees of poly-
the situation of factoring a monic polynomial. nomials with integer coefficients containing the factor

According to a well known lemma by Gauss [7]. Fkr(:s,:2), there is a monic polynomial F(-,,:2)
factorization of a polynomial with rational coeffi- with smallest degree. F1:,:2) is irreducible over in-
cients is equivalent to that of a polynomial with in- tegers since otherwise F: 1 .:2) = A(: 1 :2)B(:l,:,)
teger coefficients (this is seen by multiplying the both A and B with integer coefficients. But then either

polynomial with rational coefficients by their least A or B has the factor Fkm(z: .:2) which is a contradic-
common denominator). tion with our assumption that F(:I, Z2) has smallest

Proposition 1: The factorization of F(: I, :,) is degree.
-such that if it has a factor Fkj/zl, Z2) with complex Let G(:,.:2) be any polynomial with integer co-
coefficients then it must necessarily have another fac- efficients with Fkm(:l .-:2) as a factor. By the division
tor Fkm,(zi. :2) whose coefficients are the complex algorithm [7]:
conjugates of those of Fkm(Z , :2)

Proof Let us write F in thex andy variables fac- G(z,2) --F(:I!:9Q(:1 ,:,) +R(z1 ,z,),

totized as: with R having lower degree than F. From the assump-
Stion on G and F it follows that also R has F as a

. factor, thus R must be zero since it was assumed that
F ".r. - = . f FF has the lower deeree amongst the olynomials with

F, -s a *'ctor. Therefzre G is a multiple. over n-
The complex conjugate of F(x,y) is: tegers, of F.

Proposition 2 is a generalization for two dimen-
F*(x.y) = Ft (x.y) 11 Fpxv). sional polynomials of another well known theorem of

F y k. km algebra for univariate oolynomials [e.g. 7], according
to which there is a unique monic polynomial with

Since F(x.y) has real coefficients F(x y) F*(x v), rational coefficients having a gven algebraic root and
i.e.: being irreducible over rationals, The generalization of

these propositions can obviously be made to any di-

Fk lx~y) [1 Fk~x,v)=F,!(x~v) Hl F*(xy). mension.
k'km " k-k Before quoting the main theorem that characterizes

irreducibility, we first establish the fodlowng facts:
The above can be possible only if the product Fact 1: The factorizarion of F(z1,. :2 with ordinat.

lIrkmFk(x,y) contains the factor Fk,(x,y), which integers aii into r irreducible factors Fk(: 1, .) is such
-also means that the product ,kmF*(x,y) contains that the coefficients of these factors are oirdinary it,-

the factor Fk,(x,y). regers. Tht., the factorization may be considered over
This proposition is a generalization in two dimen. integer

tA
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To see this we observe the folowing: For instance, the univariate polynomial 21:4 +
First, if we admit decomposition into factors with 52:3 + 24z 2 + 9: + 2 =(: + 2)1( + 3z)(1 : + 7:2)

some complex coefficients, they will appear in corn- over integers, whereas modulo 2 is factored.as z4 : =
piex conjugate coefficient pairs. Flipping factors with :(I + )k I + :" + -2) 

and we note that 21I,
4 + 52.z

3 
+

such coefficients has to be done in those pairs since if 14T2 + 9: + 2 --- 4 + : (mod 2), z. + 2 
= -(mod ;one flips one factor of the pair only, according to I + 3.- EI + : (mod 2); 1 + : + 7:2 =- 1+: + :2 mnod

Proposition 1. the polynomial built will no longer 2) (the sign -denotes congruence). On the other hand,
have integer coefficients and thus cannot be considered the polynomial :3 + 217z2 + 116z + I is irreducible
representing a valid object under our assumption of over integers, whereas modulo 5 becomes
absence of noise. Of course, pairs of complex conju- .3 + -2 z 3 + -2 + + I
gate factors combine giving higher degree polynonuals - 2 1:d + 16z S I - + I (

with integer coefficients.
Secondly, if we admit a decomposition with factors :3+2z2+z+l=-(z 2

+3z-l1:+4) mod5).
having some irrational coefficients. flipping some of As a consequence, in order for a polynomial to be
such factors and leaving others unflipped will lead to irreducible over integers, it is sufficient that it be ir-
a new polynomial with some factors of irrational co- reducible modulo some q which conserves its degree.
efficients (those untlipped) equal to those of the old Obviously, the hieher n or q, the more likely it is that
polynomial, i.e. before flipping some of them. Ac- the polynomial has the same factors modulo qn as
cording to Proposition 2 that new polynomial built over integers. The condition that the olynomal has
after flipping cannot have integer coefficients as well. the same degree over integers and modulo qn is very

E.g., the object F(i ,:z2) = .1 + 9z2 + 8zlz ad- important. For instance, 5z3 + 30z2 
+ 47z + 6 =

mits the factorization (:1 + (4 + /',(zI + (4 (z + 3X5z
2 
+ 15z + 2) over integers, whereas modulo S

- '/ 7)z2). However. none of the possible objects ob, becomes 2.- + I which is irreducible,
tained by fipping any of the factors has integer coef- We shall now quote the theorem with which the it-
ficients. Flipping the second factor, for instance, reducibility of Fz), :2) can be established.
would yield the object F(:,.:) =(z + (4 +V' h,) Theorem [ill: Let F(z) =Zm 1P-Zm-I 

+

X (z2 4" (4 - V~)zl) = (4 --')z +( 4 +/ Zizl 2. + p, + p be a univariate polynomial in :, with coef-
Fact 2: Let gcd Fr ,:. 2. hF!hz1 ] = D(:. .1: ficienis being in the finite field of integers modulo q

then Fhas a repeated factor txzl, z,) if and only ift (q is a prrin. and such that Fz) is square-free (or has
divides D(:I, :2) and F'D is square-free. repeated factors all with the same multi licin); then

For exampie. ifF Fi:,, t A:, .:) wi:- of F,':, is irreducible over q if and only if the marnx
being an mteger'greater than I and u and w not neces-
sarily irreducible, then F'z = au*-l w hw hzl+ IA 4 -64l, (i=0, 1, ...m - IJ=0, 1 ... m - I)

u*aw8izl, so that D:I,z2) = ua-1 and FiD = ow. If
D = I, then F(: , z2) has no repeated factors. Other- (6)
wise the factorization of F is speeded up by studying has rank s equal to m - 1. The elements Aii are de-
that of D and FID separately. The process may be fined by the congruences:
repeated.

Fact 3: A polynomial in one or more variables = M-1

which has a certain factorization over integers into r - A i (tmod F(z)) (i=0, 1, ... m - 1)W7)
in-educible factors has an equivalent factonzaton
modulo qf /n being a positive integer znd q a prime and 8 V is the Kronecker delta Moreo ver. if F: is fac-
number and such that with respect to some variable torizable into r different irreducible factors with the
the degree of the polynomial is the sane as over the same multiplici, then the rank of the marx (61 is
integers, with at least as many factors. In addition. s * m - r.
the arithmetic operations are conserved when passing The first row of the matrix A is always (1, 0, 0. ... 0)
from the field of integers to the finite field of integers representingz 0 (modulo F(z)) which is 1. The second
modulo qn[ 10/ row corresponds to zq (modulo F(z)). In general ?

06

I

K _ _
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(mod F(z)) is determined as follows. If FR, :2) :3 + (813z2 + 1314z4

+bi z+ ...+bim z' - (mod F(z)), (8) + 579- + 75:2+ 60 +815)z2

then +(23z 2 + 17: +213z+ l19:,+751)z

'
1 
-- b 1 ~+ b 2 

+ ,.. +. bimilzm + (83z4 + 13z' + 42:2 + 27-, + 23).

b2 oz + .. +b g_2 I  For z, = I this becomes

+ bim-l(-.Pm-i
z m - I 

- -Pie - P1) F(. I) =:3 + 36562 + 447-- + 188.

=b1 i.0 + bj+I.. z + ... + bi+,.m zl-
,  (9) By reducing F(:1 , 1) modulo 5 we have

herel T F(Z 1, 1)=-
3 + -2 + _

where l t + - 1 + 3 (mod 5).

bi.l, = biji 1 - bi,m_IP 1 . (10) Eqs. (7) are, working in arithmetic modulo 5:

The recurrence relation (10) may easily be imple- lO 
=  (1 0 0)

mented in a computer;b/._-! is considered to be zero = (0 1 0)
so that bi.o1  = -b,,-Po. (Note that analogyof .2
the polynomial Q(Ai,) obtained from a minor of ! =(0 0 1)

orderm - I of the matrix IIAy - 6#II being different z3-3-2:i-:i= + 3zl +4

from zero with the polynomial Q * 0 quoted in ref. 2(1 0 0)s3(0 1 0)+4(00 1)
[41.)

In general, no matter how large the degree of the -(2 3 4)
polynomial is, it is possible to find in practice a small 4 I

integerq such that the rank of A11 .- S#i1'ism - I Z -3z I-24- :j 1 ,z2+44
if the polynomial is irreducible over integers. However. = 2(0 1 0) + 3(0 0 1) + 4(2 3 4)
one should be aware that some pathological cases (3 4 4)
exi-s [121; for instance, there are polynomials irre-
ducible over integers but reducible modulo every Z5 -3,2 - .4 -2 +

prime.
To test the irreducibility of a two dimensional 2(0 0 1) +3(2 3 .) + 4(3 4 -p

poiynorual like ( I ). we proceed as foilows: -(3 0 0)
1) Reduce F(z . z2) to a primitive polynomial.
2) Check whether TzI, :2) has repeated factors Iw 2(2 3 4) + 3(3 4 4) + 4(3 0 0 = (0 3 0)

according to Fact 2. IfD(, 2:)* l,the polynomial m '2(3 A 4)+ 3(3 0 0)+4(0 3 0)1tO 0 3)
is of course reducible. -- 2(3 00)+3(03 O)+4(0 0 3)=(I 42)

3)If D 1 ,z2) = 1, then fix a value of;, =Z- so

that the degree of F(:,: 0) is the same as the degree ,:9--'(0 3 0)+3(0 0 3)+441 4 2)--4 2 2)
of F(z .- _) and F(z,:,) has no repeated factors.
According to Fact 1. zo may be an integer. - Z(0 0 3)+ 3(1 4 2)+ 4(4 2 2)-E(4 3 0)

4) Transform F(z1 ,z0 ) into a polynomial F(:1 ,:) (all powers of:1 are modulo 1. +1 2- I - + 30).
with coefficients modulo q as stated in Fact 3. For example. ?4 is obtained as (allows: one takes

5) Build the matrix !.A,1 - 6iI for F(: .,)) ac- the remain 4 , - 3.te re ider ot .tividl nt ov- .2 -'

cording to the above Theorem. It mitht be possible which is - - 32 :us is congruent with

that several values ofz0 and several modulo q have to * 2 + 4z3 (modZ5).ThenzjT and:i are sub-

be tried (in increasing order) until one obtains a rank stituted by their 'armer representations (0 1 0).

ofm - I (for irreducible F(z 1,: 2) ). (0 0 I) and (2 3 4) respectively, yielding (3 4 4).

Exanple The .4 and .4-1 matrices are therefore

t4
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/1 0 0! /0 0 0 \ the more information the a contain), the more dif-
ficult would be to reduce the rank.

A 3 00' 1=

\4 0 01 4 0 4/ We are grateful to BJ. Brames. M A. Fiddy and
J.L.C. Sanz for valuable discussions.

The minor 14 
0

j1 = (mod 5). Hence the rank of the This work was iupported by grant AFOSR-81-0 4 1
matrix A - [ is 2 and F(z I , 1) is irreducible and there. 0003 from the U.S. Air Force Office of Scientific
fore F(z ,z2) is also irreducible. Research.
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ofA - I to be smaller than m - I if the noiseless ob- Math. Comp. 24 1970) 713.
ject is reducible: the more complicated the object (i.e.

'-a
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We study the operating characteristics of a cavity with a gain medium inside and one phase-conjugate mirror as a
regenerative amplifier. We show that, for this cavity to work efficiently, the phase-conjugate mirror must have a
reflectivity in a certain range determined by the reflectivity of the ordinary mirror. The difference between the
phase shift of the incident wave and twice that introduced in the phase-conjugation process should be nonzero.

Optical resonators with one end phase-conjugate mir- Go = e rL. (2)
ror (PCM) are a subject of active research t - (see Ref. The complex amplitude of the output wave u may be
5 for a review) because of the property of the PCM to obtained either by using the boundary conditions for
correct, or partially compensate for, phase distortions the fields at P and PCM or by adding the geometrical
inside the cavity.

Recently, a Fabry-Perot cavity with one PCM of series that results by considering the multiple reflec-
unity reflectivity was shown to produce cancellation of tions in the plates. The second method, for instance,

the wave that is specularly reflected from the ordinary gives

mirror, yielding an emerging output wave with the same A = rue + Ut2
erLuo* - t 2r l 

2e2YLuo
amplitude as that of the incident wave and with con-
jugate phase.-7 This phenomenon constitutes in fact +I # 2sor2e"Lu°o-tr i4e4rLu°
a particular case of the correction of scattering distor- + t01.4W-reS Luo* +...
tions of a wave front by the presence of a PCM. 8 ,j42ALu l + I.+

In this Letter we repert some properties not yet = ruo - t2rf,42e2VL(1 + I/zI 2r2e2rL + ... )tO
studied of cavities with a PCM and filled with a gain + e L,2 (I + Ipl 2

r e
2 L +..)Uo*

medium. We show that interesting interference phe-
nomena take place when the system operates below r(l - t2e2"L)uo + .(1 - r2 )e(Luo
threshold as a regenerative amplifier,9 .' ° so the behavior 1 - r ler .L
of the system may be quite different from that of ordi-
nary amplifiers. The condition for the convergence of the series, which

We assume an incident linearly polarized electro- also corresponds to uhe stability of the feedback sysem,
Luagrietic wave uo and reflections in the mirrors P and is
PCM such that complete reversal of the state of polar- 2

2 L <(4)
ization of the wave at the PCM takes place (see Ref. 8. r9A e (4)

Sec. 7), so that one can work with scalar quantities. The Figure 2 shows the plots of JpA2 versus the critical values
output wave emerging from the cavity will be denoted (yL), at which
by u (see Fig. 1). Let r be the reflection coefficient of
the ordinary mirror P from the left-hand side; then the r9Aaelt vLlc = 1 (5)
reflection coefficient of P from the right-hand side is -r,
and its transmission coefficient on either side is t2 = 1 for several reflectivities r2.
- r 2. The PCM is assumed to have a reflectivity A = The overall gain of the system is given by the intensity
l1ei*, so if uv is the wave reflected at P inside the cavity of the output wave I =fI uI2:
and propagating back to PCM, the wave a: P after [r(2- g2e-rL) + I41 (I- r 2)eSL cos
a round trip through reflection at the PCM will be I I2
eLt'p*. in contrast with an ordinary cavity in which 1 - r iu12e -fL

a phase factor 2kL would be accumulated in every round +ru (I - r12)eI . ]
trip. k is the wave number, and L is the length of the + W 2e1 r 2 -L (6)

cavity.
The gain coefficient y of the medium inside the cavity where 0 - $ - 20o, 0o being the phase of the incident

is given by the imaginary part of the complex propaga- wave uo, and where the amplitude of the wave is as-
tion constant A, oso sumed normalized to unity, i.e., uo = ei"..

We compare the expression given by Eq. (6) with the
k A - i'y/2. (1) overall gain of a cavity with two ordinary mirrors of

The single-pass gain'0 of the traveling wave across the reflectivities r; and r2 in the resonant situation. namely.
cavitv is when 2kL = -2n,. (n is an integer):

0146.9592/84/120555-03$2.00/0 C 1984, Optical Society of America
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'd= rill - r.,2e 2L ) - r2G( -r2e1102 so .s, 5 .5

112 rd.r 2 e2
L " " (7)

or in the particular case when r, = r= r in which Eq.
(7) become t1 ord = [rl1-eYLl. o,',

From Eqs. (6)-(8) we observe the following:

(1) For 0 = m,r (m is an odd integer), I becomes
identical with 110ord and has a zero at 1'"

Go = eL (9)

which occurs for -yL positive (i.e., single-pass gain Go '// r
greater than unity) when r > JMj. (Observe that this is - /
in agreement with the law of conservation of energy of
the electromagnetic wave.) This fact permits the de.
termination of the phase 0o of the incident wave in this i
device for Go, r, and I Al given satisfying Eq. (9) (which ,

. /
1e 10 "4 1 to .-- t

Fig. t. Diagram of the regenerative amplifier. '
Fig. 3. Overall gains versus yfL and Go fortF2 - 0.95:--,

_______________________________ 1 11-d. The horizontal solid Line represents I for 0 = 0 and any
114 2, ]A 2 = 0.20 and any o, andlui42 > 1.05 (e.g.. JA2 - 1.2 and

ii .. ,I for (p = -,(m I12'r); - other than hori-
o.zontal, I for 0 3sY4.

Is can be attained, e.g., by varying the length L of the
cavity) if the phase shift at the PCM 4) is known and.
marched to satisfy - 2 0o =miT. [Wheny = 0, Eq.
(9) implies that r = Im.

(2) The overall rain is enhanced below threshold by
working near its resonance point tyfL ), given by Eq. (5
while maintaining condition (4). Since (-yL), is positive

2, for a cavity with gains, one should have, according to Eq.
* ~(5), 1;[2 <lir2. This leads to the result that no overall

amplification is obtained by increasing the PCM re-
,,flectivity beyond the value r

2
.

(3) For 0 - 2nT (n is an integer), does notpresent
any resonant value. At (yL)r, I has the finite value (

* + r2)/2r. Therefore, when 4P' 2o, the cavity will not
work as a regenerative amplifier. This will be so in
particular when -be = 0 and there is perfect phase
conjugation at the PCMII i.e., when (P = 0.

Figure 3 ilustrates hese points. Theoveral 0gain I has
been compared with the ordinary case for given by
Eq. (8) 0

2 
- 0.95), and 112 >. given by Eq. (7) appears

plotted as the limit ofI when . = -.. The curves of I
O nversusyL and Go are shown for different value of and

A
2 

while r
2 is maintained at 0.95.

Fig. 2. Values f2 u) versus critical yLlo for several For T - 0.1 remains around unity, and no regenera-
re-lectv -ies r-. tive a plification takes place independently ofM e.flecivit beynd he vlue itL
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For low I l2 
(1142 - 0.20), 1 also takes values around The author wishes to thank E. Wolf for introducing

unity even when "yL is large and independent of o. him to the subject of phase conjugation and for many
For JA 2 = 1.2 (1.2 > Ir2 

- 1/0.95) and higher, I also suggestions that motivated this work. He also thanks
remains around unity, and no improvement of the him and R. W. Boyd for many interesting comments
overall gain is obtained by increasing IA2 
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when o = r with a zero minimum around "rL c= 0.23 (Go 121, Madrid 6, Spain.

1.26).
Finally, when /r

2 
> I

2 
>- r- (e.g., when Il42 = 1), the
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It has been experimentally demonstrated that the effect of doubly scattering coherent light within the limitations
of a particular model gives rise to probability densities that are K distributed. The probability distribution of pho-
ton counts Pin) therefore has an exact analytic form and has been favorably compared with the experimental val-
ues. as have the normalized momenta of intensity.

INTRODUCTION where t(, n) is the transmission function of the second dif-

A recent theoretical paper by O'Donnell' has examined the fuser and D is the domain of integration [an unimportant
probability distribution of intensity and the correlation phase term and scaling constant were ignored in Eq. (1D].
structure of coherent light that has been scattered on two Hence Alx, v) = ao.otx. y), where o,. Ao are independenr and
distinct occasions. The model is essentially one in which are themselves Rayleigh distributed according to
dynamic Gaussian speckles arising from a primary scattering 2(aj
mechanism are themselves scattered by a translating diffuser p d I = exp,-; a 2/6,12)
-see Fig. 11. The secondary scatterer idiffuser is located in
the far field of the primary scatterer. and it is assumed that TA
the microstructu:e of this diffuser is much finer than the in- p(t.4o) = -, exp(-4, 2

/aj
2
). (21

cident coherence domains (speckles) that illuminate it. All a,

measurements are made in the far field of the secondary dif- with or1
- = (lad 2 ) and dr2- = (lAd 5 ).

fuser. The probability density ofA - aoAQ is then
Using these assumptions together with a nonrestrictive

approximation, it was shown' that this process exhibits a p(IAI) = dfl' d1.4ddaojod)pfldl6(p -1,4dlal. (3)
probability density of intensity that is K distributed.

- The fo"
moments of this distribution are well knownl and agree fa- where 6 is the Dirac delta function.
vorably with the experimental results presented in this paper. By carrying out the integral over Ao first and by making the
Further. it is demonstrated here that the Mandel transform substitution el = ao2

a(J/Al a,) for the second integral, we find
of the intensity distribution may also be expressed in an exact that
analytic form to yield the probability distribution of photon
counts. These curves are shown to fit the data extremely well 4 4 A t r- - -2141 1
and confirm the analysis that this process is indeed K - pj.41) -- +|de expfl-""coshlrl- )4)
tributed and hence capable of exhibiting highly non-Gaussian
fluctuations under circumstances that are explained below. This is an integral representation of the zero-order Bessel

function of the second kind: thus

THEORY pI.AI) = 4 Ko 4i I,)

Only the most basic elements of the theory are presented here.

a more detalied account being given in Ref. I. The experi- where 3 = (Al 2
) = a12,2

2

mental arrangement is shown in Fig. 1. A laser source illu- If many speckles are illuminating the second diffuser, an
minates a rotating ground-glass diffuser, producing dynamic intuitive approximation is made, in that the complex ampli-
Gaaiaz speckle in the far field, where the second translating tude of each speckle is spatially constant over eoual-ized
diffuser is located. A hard circular aperture is placed on axis domains within the scattering aperture. We may then express
immediately behind the second diffuser to limit the number !he complex amplitude seen by the detector as
of speckles t hat illumnate it. If the correlation scale ii.e.. the
speckle size) is much larger than this aperture. we may assume .. (x.y = s a. t e', n x+ d~d,
that. at any instant of time. the complex speckle amplitude , f, ,
denoted by ao is approximately constant over the scattering (6)
aperture. The complex amplitude seen by the detector may
then be expressed as where a, is the spatially constant comoies amplitude of the

-k ith domain D, and N is the number of oomtMs present within
.Aix...) ,1 f -exp- lx + 11) :he scarterine aperture of 'he ,iftuer. The :,?ntral-limit* idtheorem ensures "hat each inie,,r-_ .v:n the nu:n :epresents

-)7-. . C 1985 Optical :.cietv o America



D. Newman VoL 2. No. I/January 1985/J. Opt. Sc. Am. A 23

LASER 3E,: .v!C'P a The Mandel transform is defined by

PW dl P1Pn i 1 - exp t0tl) )

where t is the detector efficiency and t denotes the experi-
mental sampling time. It is a necessary condition that the
sampling time t be much less than the average intensity-
fluctuation time r, for Eq. (10) to be considered valid. Direct
substitution of Eq. iSl into Eq. t V31 yields a Bessel transform
whose solution5 is

HARD '!RCULAP- Z4APRCIPCLIOF V/A r(N + n)
FRAIUS A Pin) = (n)- - -'-e p - W, (I/(n>),

2NO DIFFUSER ((N )2(n)l
where (n) = Nt3 is the average number of photons per

sample time and W,.(zl is the Whittiker function with k =
• Z M -in + N/2) andy = '!2 N - 1).

Again substitution of the appropriate forms of the Whit-
tiker function in Eq. (it) yields the result

V , , (n) F  dxV': expi-rI
! P(n) - (N)1 f clx dx / (Uxp (12)

r (N) N + -- Ix
;Ml CORRELATOR -P85 %N ]

Fig. 1. Experimental setup. The integral in Eq. 112) was calculated numerically for each
value of n. as it is an exponential integral and cannot be re-

a complex amplitude, which has circular Gaussian statistics. duced analytically. Although our heuristic derivation of Eq.
By the theorem of Jakeman and Pusey 4 a random walk of the (12) was based on a model with implicitly integer values of N
N steps in Eq. (6) is distributed as (approximately equal to the number of speckles illuminating

4!.41 1 I.4!/.v (21.41 the second diffuser), it is not restricted to integer values.
,iiAI) = - -- K t ' (7) provided that N - 1. Numerous examples of distributions

)v' - ' involving noninteger values of N were analyzed and agreed

which may be rewritten in terms of the normalized intensity well with the predictions of Eq. (12).
distribution as

2 F 1 K.- 2  
• 8) EXPERIMENT

FGV) 3 An 8-W argon-ion laser, X = 490 nm. was used as the primary

where, 1 - N3 - ( A! 2
) is the average intensity. Ky-t is the source of coherent light, which passed through a microscope

modified Bessel function, and FI N) is the gamma function, objective of 16-mm focal length before transmission through
Thus a random walk ofV steps. in which each step length is the first diffuser. The distance between the microscope oh-
given by a K distribution, leads to another K distribution of jective and the diffuser was varied in order to control the di-
the order A' - I. The normalized moments of intensity are ameter of the primary source and therefore to control the
therefore speckle size in the far field of the first diffuser. A second

diffuser was placed on axis at a distance of approximately 1.65
1 i . (9) m from the first diffuser, and a hard circular aperture pre-

(I) (. ) ceded it. The detector was located along the optical axis at
where we note :hat. when N a distance of approximately 1.5 m from the second diffuser.The detector consisted of a 50-,um-core optical fiber coupled

to a photomultiplier tube (PMT) and to a pulse amplifier/
- r!)

2
" discriminator. Digitaloutput from the discriminator was sent

to a photon correlator and an on-line computer for processing
which represents strong intensity fluctuations, whereas for the moments of intensity and the photon-count histogram.
large N it is easy to show that The sample time for all measurements was 5 X 10- 5 sec. and

in!
,  a typical 30-sec run yielded 3 total of approximately 6 X 103

lim'i-. samples. The l'e correlation time of the doubly scattered
intensity fluctuations had a measured value of ., - 5 X 10

-
4

waich represents a Rayleigh or circular Gaussian distribution, sec; hence the total number of independent samples was ap-
The present experiment explicitly measures the probability proximately A - 6 X 10' or a 30-sec run. Corrections for
distribution of photon events Pin i from which the normalized dead time and dark counts were made in calculating the nor-
intersity moments are found by computation of the normal- malized moments, although both effects were small. A lower
ized factorial moments of Pin). A theoretical calculation of limit of the rms variance for the moment calculations was
Pin ) may be achieved by taking the Mandel transform of the made using the following simple argument: If .x represents
!ntensitv distruit:n 'Eq. 'Sol. he value of the mnth intensity moment. as estimated frm .%

-z



24 J. Opt. Soc. Am. A, Vol. 2. No. IJanuary 1985 D. Newman

Table I. Experimental Measurements of the Normalized Moments of Intensity

Number
of

(12) I* 1 Independent
T7T [ .3I'7T73 Samples

Predicted value 4 36 576 L4400

Experimental values 4.03 ± 0.12 35.13 ± 3.6 470 * 200 7425 = ISOO 6 x i04
4.06 *0.12 36.55 ± 3.6 520 ± 200 9075 a 1S00 6 X 10,

4.003 * 0.12 34.42 ! 3.6 440 ± 200 6850 i 1S000 6 x 101

N =2

Predicted value 3 18 180 2700

Experimental values 3.06 ± 0.09 18.50 ± 1.7 163 ± 50 1610 a 1800 :3 X 10'

2.94 a 0.09 16.44 ± 1.7 134 ± 50 1240 a 1800

N -3
Predicted value 2.66 13.3 106.6 1244

Experimental values 2.67 t 0.05 13.4 t 0.7 100 17 922 * 480 6 x [04
2.66 ± 0.09 12.9 * 1.2 88 .31 665 : 800 3 x 104

N=4
Predicted value 2.5 11.25 78.75 787.75

Experimental values 2.53 a 0.07 11.52 ± 9.09 73.6 1 18 521 = 530 3 104

statist.cally independent samples I, i.e.. distribution of P(n) gradually broadens toward a negative

1 W exponential distribution as N is increased.

then the variance of x is DISCUSSION

2- . _ (Ii=12 (12 1- 2 The experimental values of the normalized moment of in-
= "= 13) tensity, shown in Table 1. indicate good general agreement

;l M- M with the predictions of Eq. 9. However, it is clear that al-

The normalized rms variance is obtained by dividing Eq. (13) most all values fall slightly below the predicted value. This
by ,'I- % 2 and taking the square root. This yields a lower is probably due to a truncation error, since only 64 channels
bound for the error, as no account of the error in the denom- were used in the histogram and the effect of cutting off the tail
inator or the photon noise was folded in. it is clear from Eq. of this distribution would certainly result in a lower value of
(9). however, that the rms variance increases dramatically with the calculated moment. The run times were also a bit short
increasing n. in terms of gathering 3 zood -tatistical base for the fourth and

A comparison of the experimental measurements of the the fifth moments 1see Eq. '131.
normalized moments of intensity with those predicted by The distribution of photon counts P(n) fits the theoreti,..d
theory is shown in Table 1. The values are seen to agree with curves [Eq. 112)] to at least the 5% level for N = 1, 2. as shown
theory well within the experimental error. Experimental in Fig. 2. For N = 3. 4. the theoretical curves again show ex-
determinations of the parameter N may be achieved by a cellent agreement with the data: however, the first few points
straightforward calculation of the speckle size incident upon tend to be slightly more spread out than those predicted in
the scattering aperture: however, it is more consistent to define theory.
N by comparing the experimental value of the second moment It is instructive to compare this model with other systems
ofintensitywith that predicted by Eq. (9). Thisconvention that exhibit K-distributed probability densities. These
is used in establishing the experimental values of N in this
paper. Table 2. Typical Parameters Used for Selecting

The value of N approximately corresponds to the number Various Values of N
of speckles illuminating :he second diffuser. This is easily Beam Diameter Aperture Diameter
controlled in the experiment by adjusting the beam diameter .v a mertre Dimet

incident upon the fIrst diffuser and,'or by varying the diameter a mmI

of the hard aperture. For the experiments, the combinations 1 0.24 1.0
shown in Table 2 were used. 2 0.32 2.0

A comparison of the nieoretical distribution of photon 3 0.32 2.5

counts Pn , with cre exerimentai results is shown in Fig. 2 4 0.48 2.5

for.V 1.2.3.4 ana irius .'aiues of 't ). The model fits the The beam 'ianeter reier% -he vesmarv m ., er it ;e .,-

data ex'-remeiv wet. F r 0. ":. -he curves show how the en,,tV
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Fig. 2. Probability distribution of photoncounts Pirn. where n is the numberof photon counts persample time toito 5 X 10- 5 seci. The
solid line is the theoretcai :urve ot" Fq. 1121. and tUhe crosses are experimentai points. Note how the distribution depends on the number of
speckles within the scattering aoerture N and the average number of photons per sampie t:mc This is seen most clearly by comparing
C and D.

sysrems zciude the snz. sca-:ering of laser :ight from a) a C "r,= [+ 1 i r" ,4)

turbuient laver of nematic liquid crystal" : b) a turbulent layer
of air. Ic the scattering of stariight from the upper atmo- where )Ii, -. ,r)l are the amplitude correlations of the
sphere. and id) the scattering of microwave radiation from independent processes I and 2. In our experiments
a small patch of turbulent seas.10  According to the limit .
theorem of Jakeman and Pusey.A if a scattering medium is = expi I
nade up of a finite number V of independent scattering \ no ]

2enters. each of which contains a correlated group of lesser ,2.T.4Vr\ //2r.4V*r\2
,catterers, which obey neaeti ve binomial satistic, then the r =
tmplitude scattered ov each independent region is K dis-

"buted. In the present context. however, the K distributions where Vi. V., are the diffuser velocities. a is the laser-beam
ar:se for a different reason, in that they are explicitly gener- diameter. .4 is the scatterng aperture radius, and J, x) is the
ited by the muitlpiicative efrects of double scattering, each Bessel function of the first kind. The correlation functions
orocess oe:g : depende.riv Rayleigh distributed. were measured with the the photon correlator. and the shape

Finaily. :'-r _', = " zhe _ ocern :educes to that of scattering and :he time Scaies were in agreement with Eq. (14). How-
i imngie Gaussian corretateo source from an o',ticaily rough ever. the results are not reproduced here.
jifuser. In other words. :his may be interpreted as a
Gaussian-Gaussian scat:er:ng process, which has been in- ACKNOWLEDGMENTS
vestiateo n a different context by Bertolottiii and others.
It .3 tr it-c:torwaro inow that. .n this case. the temporal The author thanks -. C. Dainty for its support of this research

-L ,,t.r.i::,t .r1r:-::e. :I.itea the !orm ana !Or many helpfui iscisshons. I iiso :hanK '. Mandel and
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We study theoretically a Fabry-Perot interferometer with one phase-conjugate mirror. Comp_.isons with results
.. viously obtained by Kastler [AppL. Opt. t. 17 (196211 for an ordinary Fabry-Perot interferometer are made.

Spetifically. we discu the field intensity of the light both outside and inside the interferometer. We also study
the intensity of the exterior field that is due to atoms radiating incoherently inside the inerferometer. The operat-
ing characteristics below the threshold of the interferometer when it is filled with a gain medium are also analyzed
and are found to be different from those of the ordinary interferometer. Finally, conditions are obtained under
which the cavity can act as a regenerative amplifier.

1. INTRODUCTION rized input waves and also reflectivity of the PCM that is in-

In an interesting paper t Kastler studied the fields generated dependent of the itensity and propagation direction of the

inside an ordinary Fabry-Perot interferometer and also those wave incident upon it; hence this reflectivity remains constant
generated outside the interferometer by atoms radiating in- during multiple reflections inside the interferometer.

coherently inside the cavity.
In recent years, phase-conjugate optics has experienced 2. FIELDS GENERATED BY AN

rapid development, 2
-
4 and phase-conjugate reflectivities of INTERFEROMETER WITH A PHASE-

the order of unity and higher have been achieved.s-- There CONJUGATE MIRROR
has also been progress in the understanding of scattering of
phase-conjugate fields (see, eg., Ref. 8 and the references cited Let us consider a system consisting of a lossless nonmagnetic
therein), dielectric partially transmitting plane mirror P, whose am-

Optical resonators with one phase-conjugate mirror (PCM) plitude, reflection, and transmission coefficients are r and t,
have also been actively investigated,- - 3 and the am- respectively, and a plane PCM, which is parallel to P (see Fig.
plitudes of the field emerging from a cavity without gains 1). We shall assume for the moment that the space between
when a plane wave is incident upon the system have been both planes is a vacuum. As is well known (see, e-g., Ref. 14
calculated.t4 - 6 and references cited therein), if t and r are the transmission

In this paper, we investigate theoretically an interferometer coefilcients of P from left to right and from right to left, re-
that consists of a losless dielectric mirror and a PCM. We spectively, then = -,: also. if r and p are the reflection coef-
calculate the field that emerges irom the cavity for several ficients of P from left to right and from right to left, respec-
reflectiities of the ordinary mirror, and the results are com- tively, then r = -p. As in Ref. 1, we assume that r, p, t, and
pared with ,hose of Refa. 14-16. We also compute the field r ae reeal quantitites satisfying the relations
intensity inside the cavity and compare it with the intensity r

2 + t2 i, (I)
inside an ordinary Fabry-Perot interferometer that was in-
vestigated in Ref. 1. The case of atoms radiating incoherently rt + tp = 0. (ib)
inside the cavity is also considered and is contrasted with Let an electromagnetic plane wave, which is linearly pola-
the more usual case treated in Ref. 1. In both cases, we find rized either in the plane of incidence or perpendicular to it,
that there is higher amplification of the fields in an interfer- be incident at angle & on the mirror P. We take its amplitude
ometer with a PCM compared with the ordinary interferom- to be normalized to unity. We assume that the reflected wave
ter, at the PCM suffers complete reversal of the state of polar-We also compute the intensity of the field emerging from ization (see Ref. S. Sec. 7, and Refs. 14-16), so that we can

the cavity when it is filled with a gain medium and the ordi- Ipat asl Ref. 8, Sec. T nde nt , a wecan
nary mirror is illuminated at normal incidence. We will see employ a scalar descripion. The incident wave will be
that there are interesting interference phenomena for the Ei = exp(ik - r), (2)
output wave when the system operates below threshold as a
regenerative amplifier'7; 3: :t may give rise to emerging fields where ki is its wave vector.
that are quite different from those produced by ordinary The transmitted wave FE at P will be in the same direction
amplifiers. ki is:

All the calculations as%:e monochromatic linearly pola- E, = t exp(ik, - rI. 3

)740-;23285,030427- 10S02.00 0 1985 Optical Society of America
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The reflected wave E, at P will be (Fig. 1) A2 -A +;t I 2r2 
+ $g r'. . . = t . (6)

E, - r exp(ik,, r), (4) 1 2r

kc, being the wave vector of this wave. A3 - Jtr + gttM AI 2r2 + strlpI Ir4 +•• = . (7)

When the field E, reaches the PCM. a reflected wave, which i - 2r
2

is the conjugate of the incident field E1 is generated that has A. = lrt + 2si 
2nl l p + lsi

2
4tt Isi +...

the wave vector -ki1S: jt' exp(-ik, • r. ji is a parameter,

assumed constant (see Ref. 12), which represents the ampli- IM2
rt (8)

tude reflection coefficient of the PCM. This field is partly 1 - 1;2r 2

reflected and partly transmitted at P, and this process con-
tinues. As a result of the multiple reflections between P and Here, the geometric series have been summed under the as-

PCM there are four series that represent the fields EL, E2, E3, sumption that

and E4 inside the cavity formed by P and PCM (see Fig. 1) as IA 2r2 < 1. (9)
well as a total reflected field ER and a phase-conjugate field
Ec outside the interferometer. The amplitudes of all these Hence the intensities of these four fields inside the interfer-

fields are omeer are given by the expressions

2rt '= ( (10)
A, t+ l~~r 4"€l142=., 1 I li= 5)(1 -r 2 )l (1))

I(1 - r
2
)12 = Q1A I2r2F '

(12

ER E 13 . j 2r 2(1 - r
2
) (12)

E 1 (1 - J;i 
2

r
2
)

2

k = 1A 4r2(f - r2).

z -0" 14 n tha-tz2rt)2 (13)

k.! where condition (1a) has been taken into account. It is to be
• I noted that Fqs. (5)-(8) could have also been obtained by using

c 4 3 the electromagnetic boundary conditions at P and at the
PCM.

Figures 2-5 show the plots of the intensities given by Eqs.
P L P0M (10)-(13) versus IA2 for different values of r2. For low

Fig. 1. Reflection of an incident plane wave E, from an interfer- reflectivities r2, the field intensities can become large when
ometer consisting of a dielectric plate P and a PCM. IA 2 is large enough, because energy is then provided by the

r.L

Fig. 2. Field intensity 13 ,4 the fleid E, in Fig. 1.
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ci,

Fig. 3. Field intensity 12 of the field E3 in Fig. I.
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- -. -r-
thor desno povdea talesouton[te ontrin d+ <:,, t2(1 (l 
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rlfl _10I)
2  (Ref. 8); it increases quite rapidly for values of r2 and IJ'-

IR (I -1A 2r.)2 (16) greater than 1. provided that condition (9) is maintained. For

and (1low reflectivities, high pumping energy, giving large values of
ad -2, can yield large [R. For (,j

2 
= 1, Ic is equal to 1 inde-

I¢ C (17) pendently of r
2 and also takes large values near the resonance(I - 1A 2F2)2  region rIA2- = Of course, the theory does not provide stable

The intensities IR and Ic are plotted as functions ofjAo2 in values oflJt and I c when rpjj
2 > 1.

Figs. 6 and 7. These plots generalize those of Ref. 16 for r2  
We also note that since all waves reach any point outside

ocher then 0.95 or0.50. The intensity IR is exactly zero atjA
2  the interferometer with the same phase, there is no depen-

= I for every value of r2, in agreement with a general theorem dence of ER and Ec on the separation between the plates.

FZ,.5.+ Fiel inest 1,.ofZ. thefedE4 i. 1.

Ss

- I

F;ig. 8. Field antersity 14 of the field 2,, in Figl. 1.

"- I

Fig. 6. Field intensity" or the reilecle :5eld E, in Fig. I.
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.5 0

'p

Fig. 7. Intensity of the phase-conjugate field E, in Fig. i.

3. TOTAL FIELD INTENSITY INSIDE THE
INIERFEROMETER

Consider now under the same conditions as before, a point P
of coordinates x, z) between the two plates P and the PCM
asshowninFig.& The waves meeting at P areE 3 , 2,E1 , and

E4. whose respective amplitudes A3. A.z, At, and A4 are given E R
by Eqs. (5)-(8). These waves have the following complex %t.
amplitudes: .R

E3 
=A3 explik(z sin 0 - z cos)], (18)----- -- - -

E2  A 2 exp[ik(-zsin8+z cos8)], (19) Z _ " - . ______
2

E, - A1 expjikt-z sin 0 - z cos 8)], (20)

E4 - A4 expfik(x sin 8 + z cos ). (21) E

The tots) intensity at P is therefore

I = JE3 + Et + E41
2,  (22) P

which, on taking Eqs. (18)-(21) into account, yields Fig. 8. Total field at s point P inside the Lnettrferometer.

I - JA3 + A4 esp(2ikz cos 0)12
+ IA3 + A0 exp(-2ikz cosl) 2

+2 RelIA3 + A4 exp(2ikz cos 6)J 1-r
X !A2" + A, esp(2ikz cos d)Jetp(2ik(x sin$ - z cos6), -G

(23) + IsM
2
(1 + r

2
) + 4ri cost2kz cos 6)

where Re indicates that the real part is taken. + 21MIlcos(2k(x sin 8 - z cos 6) - ol
By substituting fror" Eqs. (5)-!8) into Eq. (23) and writing + r( + tI2)cos(2hx sin 8 - 0)

+ MId2r2 cos(2kx sin 6 : cos d) - o]). '25)
24) which represents a rather compuicated system oi fringes.

one finds after a lengthy bu: straightforward calcuiation The case = 1 is interesting .nd provides some insight.
that Expression 125) then reduces to
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1 4 coskix sin 9- zcO) - Sequence 3: grt(l + JI 2
r2 + I A

4r4 + ..)
Mart

r
2 cosikux sin 0 + Z cos 9) - 0112. (26)r (35)

It is interesting to compare Eq. (26) with the corresponding Sequence 2: JArt(l + IMU -2r2 
+ Is' 4r4 .... )

expression Jo for the intensity resulting from an ordinary ] 
2
rt

Fabry-Perot interferometer given by Kastler in Sec. 11 of Ref. (36)
1 for large r

2
: 1- IJ 2r2

4r The series has been summed under the assumption expressed
.,= Cos2(kz coS a). (27) by relation (9). Since on reflection at the PCM the fields

emerge with the phase reversed with respect to the incident
When r2 is large (near unity). Eq. (26) may be approximated one, all four of the sequences of waves emerge in the direction
by the expression A with the same phase factor explik(z sin 0 + z COS 0)1; thus,

S 16 cos2(kx sin 0 - o)cos:(kz cos 8). (28) unlike in the ordinary interferometer, they will not produce
I- interference fringes. The field EA is therefore given by

This expression represents a system of fringes along OZ of (l - r1) 
/
2

width Az X/2cos0.justasintheordinarycasedescribedby E A + +AU+ $2?)
Eq. (27); however, these fringes are modulated by another 1.-l 2r (I +

system along the OX direction of width U - A/2 sin 8. X exp[ik(z sin 8 + z cos 0)1, (37)
Existence of fringes along the x direction may appear and its intensity is given by

somewhat surprising at fust. Their separation is well defined
by Eq. (28); however, their origin is determined by the abso- 1A = I -r

z  
1 + (I + OW + r

lute phase of the incident wave. When r2 - 0.95, the masi- (1 - I A2l-r2)
mum intensity of the fringes given by Eq. (28) is + 2r1 42 + 2( + r)(1 + rJ 2

)1/4 CoS 1, (38)

I --L6- - 320, (29) where Eq. (24) has been used; the total intensity emitted by
I - r2 N atoms radiating incoherently inside the cavity will be just

which is more than four times larger than the maximum value NIA.
of the intensity in the ordinary Fabry-Perot interferomeer When IAi 2 

= 1, d = 0, and r2 
- 0.95, 1A is equal to 312, which

given by Eq. (27) under the same conditions: indicates a considerable amplification of the intensity corn-
f 
78. (30) pared with the intensity emitted by the atom at M in the di-

rection A in the absence of the mirrors, when it would have
Also, the overall amplification factor of the interferometer, the value unity. In fact. ]A is considerably greater than the

which is given by the mean intensity, is in this case intensity generated by atoms radiating incoherently inside

(1) - 320(cOS
2(kx sin a - 0) cos

2(kz cos 0)) = 80. (31) an ordinary Fabry-Perot interferometer under the same
conditions; it would then have the value of 32 (cf. Ref. 1, Sec.

On the other hand, in the ordinary interferometer, one has (see i11).
Sec. II of Ref. 1).

(1_,) - 78(cos2(kz cos 0)) - 39. (32) X

4. EMISSION FROM ATOMS RADIATING
INCOHERENTLY INSIDE THEINTERFEROMETER

Suppos that there are atoms inside the interferometer
emitting light (for instance, by irradiating them laterally to -

excite their optical resonance, as suggested in Ref. 1). The E " V
waves emitted by these atoms will be assumed to be mutually A -

incoherent. el 81,..-
We shall consider the radiation emitted by an atom located I -

at a point M toward the outside through the plate P, at angle 21
a. Let EA denote this field (see Fig. 9). L has an amplitude Z 1 , _ 4
that is given by the sum of four sequences of rays: "

Sequence 1: (1 +IAI 2
r

2
+ IA4pi +...)

t -w 2i (33)

Sequence 4: Ast(I + I A2r2 + 1j4r4 +...)
Ut P L PCI

134) Fig. a. Field 3 4 radiated at direction d b an atom placed at M inside- the interteroreter.
C.
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L. Let U be the output wave emerging from this cavity when
it is filled with a gain medium. If (i, is the wave reflected at

! ) P inside the cavity and sent back toward the PCM. the wave

: I at P, after a round trip involving reflection at the PCM, will
8 be (14 e e LLF, in contrast with an ordinary cavity where a

phase factor 2kL is accumulated during each round trip [cf.
p1 I Eq. (241.
:I I The gain coefficient y of the meuivm inside the cavity is

given by the imaginary part of the complex-propagation
7 constant (assuming no absorption losses). i.e., by the imagi-

g nary part of

h = k -c- (39)

6 2. 2

r .0.95 Hence the single-pass gain' s of the wave across the cavity is
. r 005 Go e L. (40)

- r -0.15 The amplitude of the output wave U may be again calcu-
5. 2.0. 2 5 lated in a way similar to that described in the preceding sec-

-**0. r 2"O.50 P PCX

2=

-. 1, -p._ u0

0 2

reletiit -2 of~i P.IZO1L:

Output; u

S 3 ' 0/

it

fe tvl e o 2 o i gh r2,. e1. r2 -ga 0.95 the inteensveityifer

is low / ioso ausOJ u tinrae ail nevle

.7,

0 1 2
g 2r ,2 :s

rel c vtFig. tO. lntensitiesrof . IA of E At for a * 0 and different v aues of the - Iz ° 
z'  )(

IA is plotted versus I, 2 (see Fig. 10) foro - O0and for dif- - #.

ferent values ol r. For high r2, e.g., r2 
= 0.95. the intensity /

is low for low values of js2; but it increse rapidly once values

ues: Whereas in the first case higher retectivity r
2 at P iii\ /

implies a lower value of 1A, in the second case higher values
of F2 may produce very large values of IA.

5. EXISTENCE OF GAINS INSIDE THE
IN T E]RFER O M E T R (Y I. ) . . ., .

We will now consider the situation depicted in Fig. 11. in FiR. 12. Values ofla,2 versus toe crltic3l -1L , ,)for several retlectiv-
which a wave Uo is incident normally upon the cavity oi length %ties r-.

. ..... . -.'t-a" .... ," . ..
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tions. Making use of the geometrical-series method, we ob- . a a

tain. with the amplitude of Uo normalized to unity.

t
2
rjA

4 
e4VL + t oI4,v.4 erL + ...

-t2
jL eLjl + 1s4j2r2 e2aLY4 + .1'

rn -/ W2 e211) + g(l - r2le,

The condition for convergence of the series, which also /I

corresponds to the stable solution of the feedback system, _ lj
is ".7"

r1A e2TI < z.(42) .. ii

Figure 12 shows plots of 4
2 versus the critical values (-L), 10 / /

at which 3/

r J A 2 2 0 L 
) 

, = ( 4 3 ) / , ,

for several reflectivities r2.
The intensity I = Lu2 gives the overall gain of the

system

il~t . o Fig. 14. Overall gains versus 'tL and Go forr 2 
=.. Dashedline.

' jN ts 10 4o
. Horizontal solid line. I for t . 0 and anyI

A2. Dashed-dotted
lines: (- ) 0 1/4, (--; 4 = :r/2, i- ) a - 3r/4, and

+ !2l (I.M1 , r )e lsin 
44-

)

. / 
+~ - rp l 42e2 

L

'/ This expression should be compared with the overall gain
corresponding to a cavity with two ordinary mirrors of

toreflectivities r, and 2, respectively, in the resonant situation.

/ i.e., when 2kL = 2nr (n is an integer):

112_da Ir.ll - r ?2-e 2- ) - ro.{ - r -)e ' 2 . (45)
I i -r 2r2 2 e z. 4

In the special case when r = r-2 - r, Eq. (45) becomes
.... ... ... ,"... . ... .... '" . i ~o, = 

r (1  - e 14 2,
2... ," L1 (46)

The resuls following immediately from Eq. (44) are

(1) When o - mr, (m is an odd integer), I becomes iden-
, 2 1 5 6 , 1, 1, 14 1 to to ticalto 12"d and has a zero at

Fi&. 13. Overall gains verai 'yL and Go for p = 0.95. Dashed line Go . e - (4?)
- -...- 1; 1'1i

d Horizontalsolid line i-: /fort 0and any
w 2. , ou 2 -. ) and ny o. and la > 1.05 1e.g.. ;A -- 1.2 and higher).
Dashed-dotted lines: i-1 I for o - ,ri4. k- I or o, = x12. which occurs for positive -L (i.e.. Go is greater than unity)

for o - 7t I i.2 and nonnorzoncI solid line. i for .# = when r > sti; this ts in agreement with the law of conservation
3j/4. of energy of the electromagnetic wave. It should be noted that
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if the amplitude (.o of the incident wave is considered to have Figures 13-15 illustrate these points: The continuous
a phase factor to (i.e., Uo is not unity), then the first term of horizontal line in Figs. 13 and 14 represents the overall gain
Eq. (41) should appear to be multiplied by Uo, whereas the I for r2 - 0.95 and r2 - 0.65, respectively, and for o = 0. in-
second term of that equation would appear to be multiplied dependently of A2. For low values of JA2 ( 2 a 0.20), ! is
by Uo'. Assuming that Uo exp(ito), the phase in Eq. (44) also close to unity for r2 = 0.95, independently of o. ForJIA2
will now beo - 20o instead of,. In this case. the condition = 0.20 and r 2 

- 0.65 and 0.25, the low values of I are seen in
o - 2o- m rwith which I hasazero when Eq. (47) issatisfied Figs. 14 and 15. When J- > i/r

2
, independently of t, the

[observe that when y - 0, Eq. (47) implies that r = JA] can values of ! in any of Figs. 13-15 are similar to those with o ,
allow the determination of the phase oo of the incident am- 0. Hence there is no amplification when the reflectivity of the
plitude Uo if Go, r and J4 are given to satisfy Eq. (47) (this can PCM exceeds the value 1/r2.

be adjusted in an experiment by varying L and [A), and one For r2 = 0.95 and intermediate values of I2, constant val-
determines the value of -yL at which I becomes zero. 0 is ues of! are obtained. These are followed by minima (which
then given by 0o - 1/2(o - mr). are zero at 0 = xr) and by abrupt increases. For these values

(2) The overall gain is enhanced below threshold by of(k 2 and fortr = 0.65 and 0.25, these minima either are less
working near its resonance point (,yL), while satisfying con- pronounced or do not appear at all.
dition (42). Since (-yL), is positive, for a cavity with gains Finally, when 1/r2 > [A- Z r

2 (e.g,. [A - I for r2 = 0.95 or
according to Eq. (43), one must have lA2 < 1/r2. This leads r

2 
- 0.65 and r

2 
- 0.25), regenerative amplification takes

to the result that no overall amplification is obtained by in- place.
creasing the PCM reflectivity JA42 beyond the value 1/r2.

(3) For, = 2nir (n is an integer), I does not have any 6. CONCLUSIONS
resonant value. At (YL),, it has instead the finite value (I +
r

2
)/2r. The interferometer with gains therefore wil not work We have investigated theoretically the fields generated by an

as a regenerative amplifier when there is perfect phase con- interferometer of the Fabry-Perot type but with one of the
jugation at the PCM i.e., when 0 0 [if Uo = exp(ito), this plates replaced by a PCM.
will happen when, = 26ol. We made a comparison of this system with the ordinary

interferometer that was studied fully by Kstler, and we
concluded that the system with a PCM can generate more
intense fields than the ordinary cavity with the ordinary

-% mirrors having the same reflectivities.
When the interferometer is filled with a gain medium, we

obtained stringent conditions that allow the cavity to work
as a regenerative amplifier. No perfect conjugation at the

:o PCM must take place [i.e., o should be different from zero, or,
if U" - exp(ioo), 0 should be different from 20o], and the re-
flectivity IA 2 must be in the ranger2 [ jI 2 < i/r2.

For large values ofr 2, Id
2

,= I is a very good value. As#
increases from 0 to r, the amplification increases until the
ordinary-cavity situation is reached at do t i'.

I0' 'A. A Fabry-Perot interferometer with a PCM permits the
: .determination of the phase of the incident wave. When U

- exp(i~o), 0 0, and i = r (0 - 0), then Eq. (44) yields (0 -
' 0- 245o).

' i ,2r
2

,' 1-[ 11 cos(20o)); (48)

/  
/,.* hence the output intensity depends in a simple way on the

7 phase oo of the incoming wave. The measurement of I thus
.I / / - - may provide information of oo.

' ,'. .It is clear that a Fabry-Perot cavity with a PCM has some
/1 r .emakable properties that also deserve to be investigated

-. 7.1 experimentally.
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ABSTRACT

Infrared one-dimensional IE-W and N-S) speckle interferometric observations centered on HD 44179 ithe
Red Rectangle-) reveal spatially resolved extended emission at K. L. and .%l of Le diameter 1"05 N-S and

0'4 E-W. as well as a central source of I e diameter 0"'. Polarimetry at K with a beam size encompassing
both sources was also obtained: the low resultant polarization suggests that scattering off grains associated
with the bipolar flow is not a plausible source of the infrared emission. The spatially resolved extended emis-
sion is elongated in the direction of the bipolar flow and is interpreted as thermal dust emission.
Subject headings: infrared: sources - interferometry - nebulae: individual - polarization

t. INTRODUCTION tral class -8 9-AO III by Cohen et al. (1975). although a
Since the discovery lCohen et al. 1975) of the bipolar nebula normal B-star atmosphere cannot be fitted to the spectrum.

associated with HD 44179 (the -Red Rectangle") and the because of the large observed Balmerjump and infrared excess.
infrared source AFGL 915. an increasing number of bipolar Greenstein and Oke (19771 provide two alternative models of
nebulae with bright central infrared point sources have been HD 44179, one a B star with an extended neutral shell, and one
identified. It is now clear that all these objects do not represent an unusual Population II F giant. The UV spectra of HD
the same phenomenon. A large number of bipolar nebulae are 44179 show features in emission and absorption unlike those of
apparentl. associated with evolved mass-losing stars and may other early-type stars with circumstellar shells (Sitko. Savage.
even be - protoplanetar. nebulae- as proposed by Zuckerman and Meade 1981: Sitko 19831. At wavelengths <: 1600 A, there
et al. 19-61 and supported by Calvet and Cohen (1978). is a precipitous dec.ine in flux: the dis:ribution of flux at wave-
However. young objects are also associated with bipolar phe- lengths < 1400 A suggests :hat the star has a spectral type of
nonena on various scales e.g.. L1551 IRS 5 )Beichman and -AO.
Harris 1981) and S106 (Pipher er al. 19761. Icke (1981) has 4. An optical spectrum of the nebulosity includes a peculiar
aemonstrated that bipolar shapes arise from a biconicai broad red -mission feature ;nich Sc:hiniit, Cohen, and
>"-tflow above a disk geometry" for example. Bally and Scoville Margon (1980) and Warren-Smith. Scarrott, and Murdin
11982) observe a constraining disk for the bipolar flow in S106. 11981) have resoived into narrow emissioai lines from a very

The Red Rectangle is a pecuiiar obiect in a number of ways. low excitation plasma. in addition .o diffuse features which
and is :o date unicue. Some oi its properties are outlined remain nidenti ed out max ,ie :ar:on-.icn moiecular emis-
below. sion. This feature is shown by Schmidt. Cohen. and Margon
1. The optical nebulosity differs at various wavelengths. but 1980) and Perkins er ai. 19811 to be nebular emission rather

the bipolar nature is best outlined with a red filter, and is than scattered starlight.
predominantly a N-S bicone iCohen et al. 1975): spikes 5. Infrared spectroscopy of the point source reveals a signa-
tangent to the edge of the bicone are observed. impl.sing that ture quite different from those of other protoplanetary nebula
material in the nebula is distributed in an opticallh thin shell or pre-main-sequence candidates. High-resolution near-IR
rather than throughout the biconical volume (Webster 1979). observations by Thronson 119821 of the Red Rectangle show a

-. The visible object at the center, HD 44179. contains a featureless spectrum from 1.5 to 2.3 jm. although there is pos-
weil-established binar. The most recent published determi- sible marginal detection of three Ac" = 2 overtone CO bands.
nation is a separation of 0"20 : 0"02 at a position angle of This is in contrast to spectra of candidate protoplanetary
146 3' in 1981.37 by Meaburn et al. (1983). The near- nebulae GL 2688 and GL 618. which are dominated by molec-
euuahty of the two components makes it difficult to determine ular hydrogen emission. and HM Sge. which exhibits weak
:he orbi:al ieements. but Mleaburn et ai. propose a plausible lines in the Brackett series. The infrared photometry to 27 ,am
progression oi the position angle ,.ith :me. of -he infrared point source in the Red Rectangle shows a

The visibie stansi ha~e been tentatively identified as spec- broad infrared excess, not identifiable with a single, cool black-
body temperature las is the case, for example, with GL 2688:

vsi$em Astronomers at Kit Peak National Observatory, operated by Ney et al. 1975). If the infrared radiation is thermal emission, it
:he Asociatiton o1 Lniersiiies for Research in Astronomy. Inc.. under con- Is optically thin: this s supported by the presence of unidenti-
tract with Sn Niiioni Science Foundation.

%ow at '.tickett Laborators. Imoenal Coilee. London. England SW7 fled emission features at 3.28. 6.2, 7.7. R tnd 11.3 pm, nor-
:9Z mally associated with optically thin therma. 1.st -mission in

Hars~ir5 Co~veCV">cr~aior. ..lrn, -., e. \t1 2 9-' 3 planetary nebulae. H it regions, and relect:.i neu~ae.
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6. The low polarization of the blue scattered light within the on the sky and a reference object i BS :305 at K and L, a CMa
bpolar nebula can be understood from the polarimetric maps at MI. This was repeated up to 5 times. On-iine data reduction
of Perkins et al. (19811 and Lacasse (1984). Substantial polar- enabled the quality of observations to be estimated, although
izattonsi - 20% are observed along the spikes and just outside all the data presented herc are the result of off-line data
the bicone. while values of 5%-10% are common in the nebula reduction. The operation of the Kitt Peak Speckle Interferome-
itself. ter. scanning secondary and on-line data analysis, is controlled

7. Geldzahler and Cohen (1983) give a 3 a upper limit of by a computer program written by D. Conners.
0.09 mJy at 1.5 and 4.9 GHz to radio emission from their VLA Data reduction consisted of computing an estimate of the
observations of the Red Rectangle. and similarly only an upper ..power spectrum " (i.e.. the average squared modulus of the
limit to the 'CO J - 1-0 line emission was obtained (L. Blitz, discrete Fourier transform, of object. sky. and reference scans,
as quoted by Schmidt. Cohen. and Margon 1980). subtracting the sky power spectrum from those of the object

Previous investigators have proposed the following model and reference, and finally dividing the corrected object power
for bipolar nebulae. The central star is located in an equatorial spectrum by the corrected reference power spectrum to yield
disk ot torus) which may obscure the star in the visible if the an estimate of the power spectrum of the object intensity. This
disk is sufficiently dense. If viewed edge-on or at a slight incli- resultant one-dimensional power spectrum is a section through
nation, the star may be visible and the bicones may exhibit the origin of the two-dimensional power spectrum at an angle
differing intensities. The central object is often a strong infrared dependent on the scan direction. Figure I summarizes the data
source. A thin cloud of dust and gas located on either side of obtained on the Red Rectangle. and gives some idea of the
the disk is responsible for the bipolar reflection nebulae. random errors inherent in this observational technique.

In this paper, we present infrared speckle interferometry on Average object power spectra corresponding to the five sets
AFGL 915, the central source associated with HD -4179. as of observations are shown in Figure 2. Denoting the estimate
well as infrared polarimetry of the point source and the sur- of the power spectrum of the sky-corrected object scans
rounding nebula. These observations serve to refine models of by Pf(J and that of the sky-corrected reference scans by
this enigmatic object. Pifl then Figure 2 shows averages of the form av CP,(f)],

av [Ptf)]: the average of the curves shown in Figure 1, i.e..
Ii. OBSERVATIONS av CP3i.) P.l(f], is a biased estimate of the object power spec-

The Red Rectangle was observed in 1981 December and trum when there is substantial variability in the data.
1982 May using the Kitt Peak Infrared Speckle Interferometer It is impossible to determine a unique object profile from a
on the 3.8 m Mayall telescope. One-dimensional measurements knowledge of the object power spectrum. We have fitted a
were made at K (2.2 ,mi. L3.5,um. and M,4.9 aum with E-W symmetricmodeloftheobject,
scans and at K and L with N-S scans. [ /]\

The technique of one-dimensional infrared speckle interfer- O =Frp) (=" + U - F) e.p -
ometry is well established iSibille. Chelli. and Lena 1979). - +1J -
aithough several observational problems remain, some of
which are discussed below. A scanning secondary mirror is consisting of two Gaussian profiles, to the observed object
used to sweep the image across a selectable narrow silt at a rate power spectra: the best-fit power spectra are shown in Figure
of 50"-10" s- The detector was the Kitt Peak -TTT- InSb 3a. There W, = 0"52. W'2 = 0"l, and F = 0.58 for N-S scans,
photometer, cooed to !iquid he!ium temperatures. Each scan while I14 = 072, I, = 0'1, and F = 0.58 for E-W scans, where
consisted of 128 data points wnose anguiar sampling interval the I; are 1, e radii. The object profiles along the N-S and E-W
was selected to give roughly 25oc oversamiping compared with axes are shown in Figure 3b: it must be stressed that while
:he Nyquist rate. Table I summarizes zhe scan parameters at these object profiles are consistent with the observed power
K. L. and 1. spec:ra data. they are only one possible object distribution.

In a typicai observation sequence. 1000 scans of the object In summary, the speckle measurements reveal the following:
would be made i- I 50 si. followed b% a similar number of scans I. The Red Rectangle is clearly resolved N-S and E-W. The

TABLE I

Sc ,' PLIuET'rS

K K
Parameter 1981 Dec 1982 May L v

Mean -a, ength . iami .. .. . .2 345 4.8

Diffrat ion-mited angular frequency of

3Sin apeeture.1 , ,arc sec .............. . .4 .4 5 3 3.8
iamolmse ,ntervai Al I arcsecl 00761 0.047 0073 0 105

SArn-ing nier ai al s' 0.001 0.001 00)1 0.001
Ma.l ooservanie frpeuenc' s pouer soectrum.

- . = :.11 -arc-sec - . .. .... r'c r0.
7  

1.3 4"

Sams( iere,' ain power ipecrsm.
_V - i 1 1.% 1 arcsec t ....... ........ .... 0.102' 0.167 0.106 0.074

Sit widtharcev:
N-s ............... ............ 0 .09 0.09 0.13

.w .. . .. .... ............ ..................... 059 0.09 0.13 0.21

T he c3n raramet es ere roi optimized in Ihe 1981 Decemi er observations. ojwlmg to a calibration
error lsz ,ered afterard.
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Fir. ;-Summa~ry of 3it measurements of the power spectrum of Ihe Red Rectanele

,nsa;e of the power spectrum indicates that the object intensity iergth. in the range 2.2-8 am. was detectable although our
smore concentrated toward the center than a s igie Gaussian probable errors in diameter estimates are- 0.

.~udpredict. Fitting a double Gaussian mode; for the object Polarimetric observations at K of the Red Rectanile were
to the observations indicates the presence of a ipossibly) obtained in 1980 October on the 2.1 m telescope using the Blue
Qc!ntro-ivmmetnc concentration .11 intensity of diameter 0 2 Toad Rapid-Pol polarimeter. Observations on HD 44179, as
am: an aisymmetric distribution of intensity of diameter 0"4 well as 8"0 north, south, east, and west of the starisl were
E -A ant '05 N-S Ii.e.. the tionizaiion is along the N-S .sxisi. obtained with a 10" beam and a beam separation of 80" N-S. In

-z' tmtc ratnt: tse pctawt ae addition. mnultiaperiure polarimetric obser'.ations at K were

£A
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obtained in 1982 September with the same instrument. Instru- (it. DISCLSSION
mental polarization was determined by observing several
unpolarized stars, and corrections for the instrumental polar- Previous IR photometry and spectrophotometry. as well as
ization have been applied to the data. The efficiency of the the polarimetry reported here, of the central region around HD
system and the zero position angle correction were measured 44179 were obtained with observing apertures larger than the
by obtaining observations of VI Cygni No. 12 and Walker 67. largest dimension resolved here 1"051. Russell. Soifer, and
Photometric data are also extracted from the polarimetry. and Wiilner 11978. hereafter RSW), illustrate combined spectra
.he results are presented graphically in Figure 4. The central from 2 "o 14 um. attribute the observed radiation to ,hermal
source is 0.3':, polarized at K. with a position angle of dust emission, and point out that the emission is broader than
_f: = 2-. A previous polarization measurement by Jones and that from a single-temperature blackbody. as had been pre-

Dyck 11978) at K gave a polarization of 0.5% = 0.2%, and viously noted by Cohen et al. 1975). For example. at,;. - 3 im,
their position angle Imeasured at J) was d = 45i ± 7'. While the gray body color temperature is -900-1000 K. while at
nebulosity 8" from the central source is slightly more polarized, ;. 10 .urn. it is - 500 K. Since HD 44179 is apparently bipolar
we do not find the Red Rectangle to be similar to typically nearly in the plane of the sky. they conclude that the dust
highly polarized bipolar nebulae e... AFGL 2688. NGC 2261. emission detected from 2 to 14 am must be op::.ail tin. This
anic S 106. conclusion is substantiated by the observed presence :t" the
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unidentified emission features generally associated with opti- 10"4 E-W by 1"05 N-S) represents an axisymmetric distribution
cally thin dust emission nebulae. of dust surrounding the central object. Both the lack of detect.

RSW attributed most of the near-IR emission to a reddened able free-free radio emission and the color temperature rule out
central star, and by assuming a brightness temperature no a free-free component. Although RSW considered only thermal
higher than the 500 K color temperature derived for the nebu- emission, there is a distinct possibility that the observed
losity in their beam, deduced from the observed flux density a infrared radiation associated with the bipolar flow could be
diameter in excess of 01. due to dust scattering in the lobes north and south of the torus.

Our speckle measurements of the power spectrum can be For example. many protoplanetary nebulae exhibit large
inonuniquely) modeled by a two Gaussian components. one infrared polarizations in the bicone 4e.g.. NGC 2261. P, =
with I e diameter 0"2 and another of total size 0"4 E-W by 16",: Jones and Dyck 19"81. as do .oung objects like S106
l"05 N-S. We find no systematic variations of the power iP5 = '01:,; Lacasse et ai. 19811. The nebula OH 0739-14
spectra with wavelength. In tact. we cannot easily model the (Allen at al. 19801 has been spatially resolved into a late MI star
intensity associated with each component because we have no and an IR reflection nebula 1 Forrest et al.. in preparation), and
a priori knowledge of the geometry. What seems clear, exhibits polarization PK =,29"- Kobayashi 1978). We now
however, is the separation into a central component and an consider the evidence for scattering versus thermal emission in
elongated component. We presume that the -central" object the Red Rectangle.
I e diameter = 0'2) is identifiable with an extensive shell We have obtained polarimetry at K with 1 10" ',earn cen-

around the starbsi HD .41-9 ind that the extended emission :ered on the central obhect. as -,%ell as poiittons "'m :he

t
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37.5 37.0 36.5 36.0 scattering component at 0 = 8: along the long axis of the
I I nebula. If Coyne's model is correct, the near-IR polarization is

due predominantly to electron scattering from an asymmetric
40- distribution of circumstellar material. The puzzle about this

8.7 interpretation is the peculiar angle of this asymmetry as com-
pared with the N-S bipolar nebula and the inferred E-W torus.

45- Another interpretation is based on the polarimetry of Perkins
et al. (198 1), which shows relatively higher polarizations along
the bicone, where enhanced densities in the dust distribution

50- 7.8 3.3 7.8 are inferred. Since one axis of the bicone is approximatel%
perpendicular to 8 = 43 , an enhancement in dust density
along that axis close to the source might result in polarization

55- perpendicular to that axis as the dominant polarization. In any
event the small magnitude of the polarization at K precludes

6.3 substantia! right-angle scattering in a particular direction. For
example, if the emission from the observed 0 4 E-W by l"05

0 N-S component were due to right-angle scattering off dust in
small lobes 0'52 north and south of the torus, the polarization
at K would be substantial and at a position angle of approx-

5 ----- imately 9W: (see. e.g.. Elsdsser and Staude 19781. Thus we
suggest that both the emission associated with the symmetric
shell around HD 44179. and that associated with the bipolar
extended material are due to thermal dust emission. That con-

5clusion is strengthened by the color temperatures observed by
8EAM RSW.

A dust grain situated 075 from the central starts) will attain a
cooler temperature than a grain in the circumstellar shell at 0"
from the star. The grain temperature will vary with distance d

FiG. 4.-Polanmetry of the Red Rectangle at Z.: un. The heary solid lines as d if the IR grain emissivity is proportional to;.-. and as
are to the direction octie polarization vector. and the lengths are proportional d

-" 3 if the grain emissivity is proportional to .-. Thus the
to the polarization. The light lines indicate the uncertainty in polarization grain temperature at d = 0": will be 0.53 (0.59) times the grain
angie. The number above each vector represents the K-magnitude at that temperature at d = 0"1. corresponding to ;. -I (,'.- 2) emissivity.
bear ositton. The range of color temperatures observed, namely, 500-1000

K by RSW. ftts this hypothesis well as long as the thermal dust
center, east. west. north, and south. The polarimetry of the emission associated with the bipolar flow region is optically
central object iwhich includes the two components spatially thin.
resolved here) yields P = 03% and 0 = 45': This result is in Are dust temperatures of this magnitude realistic' Following
agreement with the earlier measurements by Jones and Dyck Cohen er al. 19Si). we assume that the binary star components
1 19781 at K as well as their position angle at J. In addition. we are identical, of type At III, with boiometric luminosities of
obtained multiap-r.ure polarimetry at K, centered on HD -360 L, each. The obsered bolometric flux (integrating :he
44179. with apertures of 6"-'0". and the polarization and post- IR spectrum and extrapolating to unmeasured longer IR wave-
lion angies were identical %,ithin the errors. Although the leneths as in Cohen e, -.::3 ,0 -ergs :-s- .sothat
intensity level S away from HD 44179 is extremely low. we the distance corresponding :o the bolometrt [uminosit, is
find the polarization level to be only - l%-2% north and D - 280 pc. The IR optical emission ratio is - 1. which sug-
south of HT) -41 79. If the IR scattering is similar to the scat- gests .A,. - 2.7 mag. and this is probably due to the small dust
tering in the blue. conditions favorable for higher polarization torus normally associated with bipolar nebulae. At a distance
occur only along the bicone in the bipolar nebula. Thus, of 280 pc. the observed spatial scales of 0" 1 and 0"5 from the
although we cannot discount the possibility oiscattering in the starisi correspond to 4 x 10

" and 2 x tOW" cm. respectively. If
bipolar regions 8" from HD 44179. we cannot on the basis of the grain emissivity ratio ll Eo, is 0.1 f0.01). grain tern-
these observations prove it. either. However. since both com- peratures of 1580 K (890 Ki are expected at a distance 0"1 from
ponents spatially resolved by speckle interferometry. namely, the startis) and 700 K 400 K at a distance 0"5 from the startsi.
the elongated source of size 074 E-W by 1"05 N-S observed at Hence dust temperatures within the 500-1000 K range are
K. L. and X. as well as the 0"2 diameter central object, were entirely reasonable.
included in the beam used for the polarimetric observations
centered on HD 44179. we show below that dust scattering
plays only a minor role in that observed emission. Our K band 1%. CONCLLSION
polarimetry can be considered in conjunction with the obser- Speckle interferomitrtc ooservations centered on HD 4-l9
vation at J by Jones and Dyck 19781, and the visual polar- at K. L. and Al reveal spatially resolved information on this
imetry obtained by G. V. Coyne, as reported in Cohen et al. source. The data are ompatible with a model consisting of a
(1975). Coyne accounted for his observations with a three- central source of I e diameter 0 2 and extended emission 1"05
component model consisting of a small circumstellar electron- N-S by 0".4 E-W. Polarimetry at K including both sources in
scattering component (approximately neutral) with P = 0.97% the beam is inconsistent with scattering as the main source of
and ) = 43. an interstellar component, and a small dust- the observed emission in the infrared. We show that thermal

I7
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emission by dust is a plausible source of the observed emission. tical geometry te.g., Leflvre. Daniel. and Bergeat 1983) might
Poiartmetric IR speckle observations would allow quantitative eventually prove useful. Subsequent IR speckle observations of
estimates of the role played by scattering in the extended emis- resolved structure close to the central star of a bipolar nebula
ston region. If the extended emission is associated with the at other aneles and wavelengths are planned.
bipoiar lobes, as seems reasonable, then scattering is expected
to contribute partially to the emission. With the present data it J. C. Dainty acknowledges the support of the National
is impossible to build a quantitative model of the source, Science Foundation (AST 792646 1) and the Air Force Office of
because of the unknown geometry and the lack of a complete Scientific Research iAFOSR-81-0003).
set of spatially resolved spectroscopic observations. An ellip-
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.3 iSaoaro,
A proof of uniqueness of phase retrieval for a certain class of objects is given. based on Eisensiin's irreduciblity cirenon.

'4) 1287. Some consequences are discussed.

The uniqueness of phase recovery for two dimen- This generalisation is not evident and no proof was
sionai positive sampled functions can be assessed given in ref. [4]. In this note we give a proof of this
from the irreducibility of the so-called object poly- proposition.
nomial whose coefficients are sampled values of the For the sake of clarity, we shall first quote the
object [1 -31. {amh. m = 0. 1. 1 .. If. .. = 0. 0 . 2. Eisenstein irreducibilitv ,riterion in its usual Form
.V: [5I.

M N Eirensrein's Lhrerion: Given a univariate Dol-
Fa:,. :,) = anyfl7Z. it nomial F(:) with inte-er coefficer.ts. -here eits a

.1 r=0 nn-O prime p in Z (Z being the ring of integersi, such that
where the ja,,n) are real positive numbers. ki) p does not divide the leading coefficient of F(:),

It was recently proposed by Fiddy, Brames and (u) p divides all other ,oefficients of F(z) and (iii)
Dainty [4] that Eisenstein's irreducibility criterion p- does not divide the coefficient of the term in 2,
[5] of one dimensional polynomials can be applied then F(z) is rreducible over the integers I and. by
to two dimensional ones by writing (I) as a poly- Gauss' theorem [5 ]. over the rng Q of rationalsi.
nomial in one of the variables : with coefficients be- To see the generalisation proposed in ref. [41
ing polynomials in the other variable z, namely: with the above formulation of the criterion. we next

quote it in the form given 6% van der Waerden Jref.
[61, p. 95)

R 1 )- £ 4(ZM? (2) Eisensrem's Cnreron 'van der Waerdeni Let G Oe

an itegrai domain [o Aittn identiiy element x
where the coefficients are which unique facrotsa:,un holds. Let

.V5

.- 23o (4)
nniO

n be a polynomial with coeff;c;ents,, ' n G If there1Os leave from Insmuto de Optic. Seciono 121. 2Isaiae ta rlr~ element p :r Cm:":' ) oe

Miadnd. Spain. exsts a prime acr pit G f/j cees

01)30.0LIS 85 S03.30 Elsevier Sc:encr Pcbchers 0,
lNorth-Holand Physics Publhsnisg DisionI
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riot divide .4. (ii) p divides all other elements fIn. m represents the :-transform of an Eisenseein object.
A , and (it) p2 does not divide Jo, then F(:) is irre- then

ducible in the set of polynomials with coefficients F( 1  .:)(a:2 + ft + ClG(zt,
over G, except for constant .actor 

=  
2  ,

Let us observe that since Z (and G) are integral also represents an Eisenstein object and corresponds
domains, the first form of the criterion is a particular to the sum of G(:,. ,,) taken with weight c, shifted
case of the second formulation. Moreover. from this along , one step with weight b and shifted two steps
more general form of the criterion we infer the follow, with weight a.
ing corollary of interest in our problem which consti- The example given by Bruck and Sodin IlJ in
tutes the formulation of the criterion given in ref. which a reference point is placed to one side of a one-
[5: [dimensional array F(:t, :2) g(:,.) * :n ' corre-

Corollary: Consider the polynomial F(:,, Z) as a sponds to an Eisensrein object providedg(:2) has at
polynomial in the main variable :1 with coefficients feast either a simple real root (different from zero if
fm(:2) as in eqs. (2) and (3), the amn belonging to n * 0) or a simple pair of complex conjugate roots.
the field Cof complex numbers. lf'there exists a Also a two-dimensional array with a reference point:
prime factor p:z2) such that: Ji) p:,) does not divide G(:,.:)) +
to/f(:2). (ii) p(:,) divides any other fm(,), m #M.
(ii4)p2 (:,) does not divide f0 (:2), then F(:, :2) iS M V
irreducible over the set C[:,I of one dimensional po- G(:, _-2) am,: t

l:m
lynomials with coefficients in C, i.e. is irreducible in m-(0 n-O
the set C[: 1 , z'2 of two dimensional polynomials where M <3, will be an Eisenstein object providing
with coefficients in C apart from factors being poly- G(:, , :2) may be decomposed as G(z 1 , z 2) = A(z2)
nomials in :, X B(z 1. 2), with A(:z,) a simple factor polynomial

Proof: The set of polynomials with at least either one simple real root (different

S from zero if N' * 0) or a simple pair of complex con.
=n ajugate roots. These art just a few instances of distribu.

• O -tions satisfying the conditions of the criterion. Of

course. any other cse among the many that can satis-
with am, in the fieid Cis an integral domain with the fy the three conditions quoted above will correspond
identity element 1. with unique factorization (see e.g, to a unique solution, apart. of course. from the poly.
ref'. [, I- L. 16): therefore this set satsies the ,tacuire. nomial faclor in
ments for the three conditions of the cntetion.

As quoted in ref. [4], the only prime in Ct:Z j is This work was supported by grants from the US
of the form z, + b. with b in C: this leads to the con- Air Force of Scientific Research (AFOSR.8 1-0003)
figuration of fig. I of ref. [41 for an Eisenstein ob- and the UK Science and Engineering Research Coun-
ject. However, if'one is interested only in real func- cii (SG(C 18190).
tions f(x. y) then the coefficients f(:,) will be in
the integral domain R [zZI of one dimensional poly.
normals with real coefficients. Then a prime factor in Re(eretme
Rt: 2,], satisfying the three conditions of the criterion. i Yu.M. Bruc ind L.G. Sodin. Optics Comm. 30(1979)
will be a polynomial with real coefficients. irreducible 304.
in Rf:z1. ,Aso. the irreducibility of FT:, z- in the 1.1 H.H. HayeN. IEEE Trans. xcoust. Speech Signal Ploceis,
set RE:1. :(2 of two dimensional poiynomials tith ASSP-0 119%21 140.
real coefficients is guaranteed apart romJacron :hsar 131 M. Nicto-Vespe nias and JC. Dainty. Optics Comm. 32(1984) 94.
-e polynormials in: i. This. so far not quoted for (Q 84A. Psday, 8.1. Braes and C. Dsinty, Optic Let.
Eisenstein's objects, is important since it accounts for ( F98s) 96.
the possibility of repeatability of a support in the :, i5 L. Childs. A conctete itroduction to higher algebra
direction by discrete steps. and its subsequent ac,.. fSptinger-Vetlag. New York, 19-9) p. 1:6,
tion. For instance, if G(: 1.:) is a pol'nomial which 3 5L. vin der 'Vaerden. A4,ebra. Voi, I Unite: New York.
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ABSTRACT

Phase retrieval for sampled, real, positive objects in two-dimensions

is studied from the point of view of factorisation of the z-transform.

This decomposition is considered over the field of integers for

noise-free autocorrelations of digital objects and the formulation

provides a means of calculating all possible objects with a given

autocorrelation. A brief discussion on the influence of noise is

carried out using some simple examples which show the existence of an

approximate factorisation over reals.

A A preliminary account of this work was presented at the 1984 Annual
Meeting of the Optical Society of America, San diego, CA.
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INRUCTzI

It La known 1 '2 that the phase retrieval proble, for sampled data is

equivalent to that at obtaining the so-called object polynomial which

represents the z-tranatom of the object samples (as.). a - 0.1.2... .M.

n - 0,1.2 ... N:

F~z.z 2  -a., z1a z2f (1)
M-0 U-0

by finding the factorisation at the so-called autocorrelation

polynomial

2M1 2N1

Cd~zl,z 2) 1 b. z1* z2n (2)

3-0 n-0

(whose Coefficients bnn represent the data) in the fern

M N M N

Q(zl,z 2 ) -z 1 M z2N [ I ann zim z2 n][ 1 a3.n' z1m# z2n]l
m-0 r-0 * '=0 n=0

Z1 Ni z2 F(zl,z 2 ) F(1/z1,1l/z2) -(3)

However, apart from procedures based on modifications of the

Corchberg-Sazton algorithm:3 , whose convergence are not yet well

understood, no other attmpta of performing auch factorisation have

been made, although recently some computational results for mall



arrays based on our analysis below have been reported4 .

In a recent paper S we proposed a test of uniqueness of the

faotorization in the absence of noise for digital objects, based on an

analysis of factorisation of polynomials over the ring of intg Z,

which for real dimital objects and noise-free autocorrelations was

shown5 to be the necessary domain of factorization. Thus, the

coefficients an and b. of Eqs. (1) and (2) are assumed to be

non-negative integers. In Ref. 5 it was pointed out also that the

scheme used for assessing uniqueness of the reconstruction could be

extended to find the factors of Q(zl,z 2) and hence the solution(s) to

the phase problem. The purpose of this paper is to show how this is

done.

This noise-fret factorisation is useful where other phase

reconstruction algorithms are tested for digital objects. In this case

the factorisation procedure proposed in this paper can give all

possible objects with integer sampling values.



3

2. FACTORING OVER INTUERS IN ONE DMENS.ON

The procedure of factorizing a one dimensional polynomial F(z) in Z

oonsists of faotoring modulo P W (p prime) by successive lifts of

factorisatIon starting modulo p. This method yields factorisation

modulo an Integer as large as one needs. (What follows is based on the

facts quoted in Ref. 5 .)

The following leMMas state how to lift the factorisations (see e.g.

Refs. 6. Ch.II.13 and 7):

Lj U (Hensel): Let p be a prime and F(z) a monic polynomial in

Z[zI. Let gl(z) and hl(z) be two sonic relatively primee polynomials

in Zp[z] such that F(z) m gl(z) hl(z) (mod p). Then for any integer

k > 1 there exist polynomials gk(z) and hk(z) in Zq[z] such that

F(z) m gk(z) hk(z) (mod q). where q a pk . gk M g (mod p) and

hk - hl (mod p).

Ljsia21 (Zassenhaus extensiong): Let p, F(z), &1 (z) and hi(z) be given

as in Lomna 1: for any integer k > 0 there are polynomials gk(z) and

hk(z) in Zq[Z] such that F(z) M gk(z) hk(Z) (mod q). where q - p2 * "

and gk M 91 (mod p) and hk M h, (mod p).

Based on these lemas the procedure for factorizing over Z (or

equivalently, modulo p"Olarge. enough so that the coefficients of

F(z) and its factors are the same as those over Z) is as follows:

0Fnote If q is a natural nuaber and g and h polynomials in Ztz]. g
and h are relatively prime module q if there exist polynomials r and a
in Z~zI such that rg + sh a I (mod q).



1) Factorize the sonic (z) in Zpo the ring of integers modulo p

(p prime). by means of Berlekamp a method 7 into two relatively prime

factos g, and h1 .

2) Write the difference F(z) - b1 gj where F(z) and the product of h1

and gj is taken over integers. Then reduce that difference modulo p
2

obtaining a polynoial k(z) in p by extracting p as a multiple.

3) Find two polynomials Hi(z) and 0 1 (z) such that

kl(z) = g(z) H(z) + h 1 (z) Gj(z) (mod p), the degrees (deg) of H1

and 01 being such that: deg G1 ( deg S1 and deg H1 < deg h1 .

4) Build the new factors (mod p2 ): g2 = g1 + plG1 and h2 = h1 + pIH1 .

5) Iterate the procedure as many times as necessary until the

factoriation mod p2W coincides with the factoriation over Z.

The details, with examples for the procedure to factorise a polynomial

7(z) modulo p2 /can be found in Section 13.B of Ref. 6.

I



3. FACTORIZATION OVER INT ERS OF 2-DIMENSIONAL Z-TRAISFORN

Based on the above ideas, the factorisation of the autocorrelation

polynomial Q(zlz 2 ) into irreducible factors (whose number is expected

to be even) with integer coefficients. or. if it is of interest, the

faotcri3ation of the object polynomial F(zlz 2 ), can be carried out by

means of algorithms that generalise univariate polynomial factorisation

to several variables. A suitable algorithm is that put forward by

Wang° which is an improved version of another method previously

established by Wang and Rothschild1 0 . The algorithm is as follows:

Lot

P(z1 , z2 ) = PM(Z2 ) Zl
N + PM.l(z2 ) zl

M - . ...... PO(Z2) (4)

be the polynomial in z1 whose coefficients Po(z2 ) are:

N
P,(z2 ) n z2 (5)

O n 2)

n-1

(1) Extract the cotentS Of P(zl,z 2 ) by obtaining the greatest common

divisor (god) Of the coefficients Pm(z2). This will be a factor in z2

of P(zl,22 ).

(2) Obtain gcd(P(zl.z 2 ), *P/0%z1  = D(zl,z 2 ), which accounts for

multiploe factors as in Fact 2 of Ref. 5. The algorithm can be carried

out by factoring D and P/D separately if D 0 1.

g



(3) Factorize the leading coefficient PM(z2) into irreducible factors

according to the procedure described in Section 2:

PM(z2) = Fl(z2)...Fr(z2)

(4) Find an integer z0 such that: (i) Pm(z0 ) 0 0. (11) For each

factor Fi of PH. Fi = Fi(z O ) has at least one prime divisor Pi which

does not divide any Fj. j ( 1, or the content of P(zl,z O ).

(iii) P(zl,z O) has no repeated factors.

(5) Factorize over integers pp[P(zt,zo)] - Pl(Zl)...Pr(Zl), where

pp( I denotes the principal partS .

(6) Denote by Pii(1 )(Zl,Z2) the polynomial obtained by substituting

the leading coefficient of Pi(zi) by Fi(z2) such that, of course, this

leading coefficient is equal to Fi(zo). Then construct the function

Rl(l,z2):

Rl(zl,z 2 ) - P11(1)... rr(1 ) - P(zl,z2)

Note that Rl(zlz o ) - 0.

Evaluate

cj~z R,1 Z2 zCi(a1) = -I

7) Find polyninals ei(')(Z1), (i = 1....r), such that

V -~ _ _ _ _d



al() 2--r+ G SS')P1-P-P 3 PP2P4 ... Pr +

such that deg(s1) ( deg(Pj). U1- I ....r).

(8) Obtain new approximtons to the factors:

P4i (2) . Pii(1) - mi(1) (22 - O

(9) Obtain a now 2zlz)

R(lz - Pj1(
2)~* ... P 2 - p(2 1 2)

and evaluate:

C2 (zl) - 1 212
822 I 22=20

In general. after obtaining P11 (m) . .. ~)in the ath iteration one

will evaluate:

lm(2lDSZ) - P21U) *p rr(3) - P(z]1,z2)

and:

Cmz

00



Then one will obtain polynomials Gi(n) (zJ) such that:

aGI()P2 .... Pr + 12 (m)P1 P3 "Pr + a3 (lIP 1 P2 P4 " ." Pr 
+
....

+ ar(B) Pi .... Pr- 1  = CM(z 1 )

so that

pii(f.') = Pil
(m ) 

- alim)(z2 - zon .

The following example illustrates the above, but of course the

procedure would be implemented on a computer for larger arrays.

Let us find all possible objects, with integer sampling values,

compatible with the autocorrelation of Table 1. The greatest common

divisor of Q(zlz 2 ) and 8Q(zl,z 2 )/az1 is found to be (see e.g. Ref. 7

for the calculation procedure):

P(zl,z 2 ) - god[Q,

= (9z23 + 9Z22 + 'z2 + l)z, 4 + (3z23 + 4Z22 + 2z2 + 1)z,3

+ (z2
4 + 1lz23 + 25Z22 + llz2 + 3)z12

+ U2 4 + 2z23 + 4z22 + 3z2)zl + (z24 + 5z2 3 + 9z2
2 + 92)

which is a double factor of Q(zlz 2 ). In fact, a straightforward

calculation gives:

Q(zl,z 2) =PZlz2)
2



P(Zli 2 ) is found to have no multiple factors.

Let us apply Vang's algorithm to find the factors of P(zl,z 2 ). An

analysis based on the methods of Ref. 5 shows that P(zl,x 2 ) has two

factors.

The leading coefficient 9Z2 3 + 9X22 + SZ2 + I is factored according to

Section 2 as:

Fi(z 2 ) - 3z 2 + 1

F2(z 2 ) - 3z2
2 + 2z2 + 1 .

An integer satisfying the conditions of point (4) of Wang's algorithm

is z0 = 1. Then

P(z2-1) - 24zl4 + jOzI3 + 53z,2 + 10%1 + 24

which, using the procedure of Section 2, factors into:

P1 (zj) - 4z 2 + z1 + 6 and P2 (z1 ) a 6Z1
2 + z + 4.

Then:

P11(l)(zl,z2) = (3z2 + 1)z12 + z, + 6

P22(l)(zlz2) = (3z22 + 2z2 + 1)zl2 + z1 + 4

Rj(z1 oz2 ) is given by

Rl (zl,z2 ) = [($Z 2 + 1)212 + z1 + 611(3:22 + 2z2 4 1)zl2 4:1 + 41

- P(zlz 2 )

t



-(432~ 3 22 32 + l)31S + (-22 - 1S2 - 7521

+ 1SSi* #)112 -S2 2S23 - 4X22 -2 +s 1O)SI

+ (-S24 - SZ23 - z22  9& + 14)

and

C(l)us' .SS13 46s11 -21,-46

02122 a I

Lot us am find P~lYMaiai .2(1) u 1 +3 b WW 41(
1)(a1) on + d

astaryins

.2(1) (4:12 + SI + 6) + al (1) (%y (63
1 

+ x, + 4) -S1 "21

Which 9iv*6 the 1in*W systft:

a +4b + a + 44

Ge + b +40 +d - 21

6b + 4da-46

rfro which a - -2. b - -5, o -0 and 4 -- 4

Then:

p11(
2) s.4. s.1- p'u,("(xzl)~ 

4(52 1) - (S2 + 1)X12 + S1

I AL



h22(2)(81- 2) P22(l) (21-32 + (2al + 5 -s2

-(322 2 + Z2 + 12 +1 (2z2 - Uzi + (582 - 1)

The Wrooedwo Is r~epeated with P11(21(al.2) Ad~ 122(2)(z1b52) until

the tsLIumIA taomation Is obtained:

Q(Xl-82 [P11(J)(x1.a2)j21 [2n(')(si-2) 12

with

P11(3)xl~2) - (3a2*1)X1
2 + 51 + (a22223)

P22(S)(1 ,2) - (3:22+2x2.1)%12 +. 32231 +(:22+3z2)

The two POssible obJscts 1l(:1. 2) - p3,3 (z-2 2()%.2 and

Vi(zi.:i) - P11(S)(21.sl)I2 ai-e shown In Tables 2a, and 2b respectively.

C)

Irv

v A
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4. INILUINCE OF NOISE

All of the above analysis is applicable to diAital. noise-tef

obleemn and thus will fail in the presence of noise. In fact, although

the noise-fres autocorrelation polynomial Q(zlz 2 ) is factorisable into

an even number of polynomials with integer coefficients, the noisy

autooorrelation will probably become reducible into factors with

irrational coefficients (the first decimals of these representing

approximations to the ideal noise-free integer coefficients). or even

reducible over complex fields, in which case no possible real and

positive object distribution can be found.

The following example illustrates the above coments.This example does

not attempt to be an exhaustive analysis of the influence of noise on

the problem, since this paper is mainly concerned with the noise-free

situation. However, the example illustrates to some extent how noise

can affect the factorisation.

The polynomial Q(zl,z 2 ) of Table 3a is found by the method of Section 3

to correspond to the object of Table 3b. This solution can be seen to

be unique by using the test of Ref. S.

The autocorrelation polynomial of Table 4a, whose coefficients are

perturbed values of Table 3a, no longer factorises into polynomial

z-transforms with integer coefficients, but into the product

F(zl'z 2 ) F(z-l,z2-1 ) z1
4 z2

4 , .with F(zl.z 2 ) having irrational

coefficients. Table 4b shows the object with coefficients obtained by

A.
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approximating these irrationals by decimals. The coefficients Of this

object are simply perturbations of those of Table 3b.

However, the situation can be much worse. Table ft represents another

perturbation of the autocorrelation of Table 3a. and Table Sb shows the

corresponding complex object. In this case no real approximation to

the true Ideal noise-free object of Table 3a can be found, and,

neglecting the phase, the modulus of this complex object represents a

poor approximation to the original object.

Even for a noisy autocorrelation Q(zlz 2 ), one expects a minimum of two

factors, (one flipped with respect to the other). However for

F(zl,z2 ) perturbed by noise one would expect to lie in a'region of

irreducibility even if the noise-free F is reducible over Z. This is

likely to be so since according to Ref.1l the set of reducible

polynomials in two variables has measure zero.
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Autocorrelatlon Function

1 2 7 6 9

10 14 $6 40 90 36 54

4S 46 226 14 390 144 261 34 a1

106 100 544 326 922 348 702 126 162

171 13 792 464 1321 44 792 13S 171

162 126 702 368 922 326 544 100 108

81 $4 261 144 399 136 226 46 43

54 36 90 40 56 14 10

9 6 7 2 1

7C

. .[
e ? --- . .,

i :.



Object MI obtained trom the autooorrelation of Table 2

S 2 11 3 9

9 4 25 4 9

9 3 11 2 5

3 1 1

Object (F2 obtained from autooorrelation ot Table 2

1

4 4

10 2 14 9

12 4 22 6 6

5 6 7 2 1
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U*lae-frn autooowvelation

25

115 so 115

126 115 352 11S 126

115 50 115

25

Cormapaodlzg object

14 5 9

WAS

li



Noisy autooorrlation

28 1 1

lit 37 128 4 3

124 119 352 119 124

3 4 123 57 119

1 1 23

Corresponding object approimte4 by decuMla

S.35 0.12 0.2

13.86 5.17 8.34

0.11 S.16

lit



Noisy autoorLation

20

100 40 1,00

130 120 340 120 130

100 40 100

20

CorsPondllU object

J-4-0 fg0/4 IL/

0.588 0 0.518

W/4

Qv

tet
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A STUDY ON THE PERFORMANCE OF NON-LINEAR LEAST-SQUARE

OPTIMIZATION METHODS IN THE PROBLEM OF PHASE RETRIEVAL

M. Nieto-Vesperinas

Department of Physics and Astronomy
and

The Institute of Optics
University of Rochester

Rochester, NY 14627, USA

ABSTRACT

The efficiency of an important class of Newton methods (the Levenberg-

Marquardt algorithm) for solving overdetermined sets of non-linear equations

is tested in finding the solution to the 2-D phase problem. It is seen that

the non-linearity and number of local minima of the cost function increases

dramatically with the size of the object array, making these methods of

little practical use for sizes greater than 6 x 6.
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1. Introduction

There is much current effort in obtaining algorithms to retrieve the

phase from knowledge of the modulus of the Fourier transform of a 2-D real

1-3and positive sampled object function 1
. Although this problem has no unique

solution in 1-D, it is now understood that in the majority of 2-D cases the

4-7
solution is likely to be unique

Let a(x,y) be the 2-D object sampled function to be found:

M M

(A being the sampling interval; for the sake of simplicity the number of

samples and the interval between samples are considered equal in the x and

y directions).

The phase problem in object space then consists of finding a(x,y) from

knowledge of its autocorrelation function Q(x,y) by solving the non-linear

integral equation:

D being the object support.

Taking into account the discrete character (1) of a(x,y) , this amounts

to solving the overdetermined system of non-linear equations:

62L3 1  T_ W +(3

Q being the samples 
of Q(xy)! ij

IC
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In spite of the progress made in computer simulations with the algorithms

used so far, no reconstruction procedure seems yet to have been systematically

successful except for small arrays or when the starting guess introduced

in the iteration process is close to the true solution. Otherwise the itera-

tions tend to stagnate and get stuck in the so-called local minimum of the

cost function. Also, the convergence criteria of these algorithms are

generally not well understood.

On, the other hand, there is now available a wide and complete study of

optimization- methods for solving systems of non-linear equations based on

gradient search. Among these, an important and well established class includes

Newton and conjugate gradient methods8'. Their convergence has been exten-

sively analyzed and is known to be quadratic. It is therefore of interest

to study the performance of these methods in the problem of phase retrieval,

namely in obtaining the solution to Eq. (3). If 7(x) is the cost function

associated with this system of non-linear equations and it is given by the

9
norm of the residuals of (3). , gradient methods operate by searching the

lime P at which F(x (k1l)) in the (k+l)th iteration satisfies:

F ~"4Y U(k.~)~ F((k)) (4i)

Hence, these procedures lead directly to a minimum of the cost function

1(x).

An important class of line search methods is the steepest descent.

2Fienup has shown the equivalence of this method and his error-reduction

algorithm. However, steepest descent methods seem to be inefficient and

unreliable in practice to find minima 8, they are very sensitive to scaling

and round-off errors and hence, although their convergence can be theoretically

AL)



I

proven to be linear, it is in practice either very slow or non-existent as

the successive iterations become unstable and end far from a minimum.

Newton and conjugate gradient methods provide, on the other hand, very

robust and stable codes of implementation. Their main disadvantage, however,

is that the computing time may become long as they require to produce and

invert an M2 x M2 matrix for an M x M object. These operations can be

made stable, though, and their time be substantially reduced with the aid

of an array processor. Also their quadratic convergence requires only a

few iterations, and no inclusion of noisy autocorrelation data is required

at each iteration as in refs. 1 and 2.

In this work we have tested a least-square (L-S) optimization; more

specifically, the Levenberg-Marquardt (L-M) modification10 '1 of Gauss-

Newton method8'9 . This is an appropriate procedure for an overdetermined

set of non-linear equations such as (3): For an object array with M2

M22

unknown elements, there are M + (M - 1) 2 equations. This fact may also

account for the uniqueness of the solution in 2-D. Earlier attempts for

1-D phase problems by using the Newton-Raphson method (which is established

for a set with the same number of equations and unknowns) have been done

in Refs. 12 and 13. In the 1-D case, however, because the number of equa-

tions and unknowns is the same and the equations are non-linear, the solution

is not unique.

As we shall show in this work, although the stability and convergence

of existing L-S codes is very good, the structure of the problem increases

dramatically in complication as the size of the array increases. The cost

function becomes highly non-linear with a huge number of local minima, both

far and near the global zero minimum that constitutes the solution to the

C
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problem. Thus, although these gradient methods are well established and pro-

vide good convergence, they alvas yield local minima and fail to reach the

solution to the problem (except for N < 6). At the se time they give,
hotiever, an account of Its complexity.

)
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2. Description of the numerical method

Given the system of non-linear equations:

(X4C , .,XPI)=

with 14 data and M unknowns .. •,x (N :M), the non-linear

L-S method for solving (5) consists of seeking the global minimum of the

cost function:

jn I

where the residuals rj are:

We shall use the vector notation:

x = (x4t, .. ,

z* (7)-- r
So (6) may be written as:

R

the superscript T denoting 'transposed'.

The iterative procedure that yields a minimum of F(x) is8 ,9

(k+,4) (k)

where the increment vector M is obtained by solving the linear system

'C



72...(x (k) ) is the Hessian matrix of F evaluated in the kth-iteration
(k)

X ( its elements are:

It is straightforward to see from Eq. (6) that:

V If F (x ) : ( x c Z ( + v, 6, . ; , .t

where JT(x(k)) is the transposed of the Jacobian J(x(k)) of Eq. (5), whose

elements are:

On the other hand, V_F(x(k)) is obtained from Eq. (6) to be:

By inserting Eqs. (11) - (15) into Eq. (10) and approximating the Hessian

by the first term of Eq. (13) one obtains the algorithmic scheme:

X C- tC)) ( TT .(()

The iterative procedure corresponding to Eq. (16) is the Gauss-Newton method.

In order that the fixed point x of the sequence (16) when k - -

be a minim m of F2x) the Hessian (13) should be positive definite.

Sometimes the neglect of the terms of (13) from the second onwards pre-

vents this property of the Hessian and is convenient to add a multiple of

the identity matrix. The result is the L-M algorithm:

h
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There are several codes for finding the optimum An efficient

.14
one for adequate line search is due to More

For the system (3) the vector x has che M2  components 4,, . Then

LT(x (k) )J(x(k)) + Y1I is an M2 x M2 matrix.

A very efficient implementation code of (17) that controls numerical

instabilities due to round-off errors that appear in (17) for M large

15(we have observed them for K >5 ), is the one contained in MINPACK

The subroutine LMSTR contained there seems appropriate since it uses minimum

storage. It is the one we have used to implement (17).

Since the autocorrelation array:

.4 IM-4

, , I

L Q ,6 -. . . . . ( .4, .M-4 I

is even around the central sampling point QMM , the necessary number of

data QiJ is M + (M - 1)2 , namely QM' ....QM,2M-1'QM+I,1' ....'O -I,2M-1..
Q2M-1,1' ""'Q2M-I, 2M- "

For the sake of clarity, the technique used for-establishing the set

of non-linear equations and to find the Jacobian will be illustrated with a

2 x 2 array. Numerical results for larger arrays will be shown in the

next section.

For example, the 2 x 2 array

a11 a12

a21 a22 (19)

ft
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has the autocorrelation

Q11 Q 12  Q13

.Q21 _lQ22 Q23 I  (20)

1031 Q32 Q33

Since QI 1 Q 1 3 ' Q 1 2 " Q32 ' Q1 3  Q 31 and Q21 Q23 we have to consider

as data the five elements Q 22 ' Q23 ' Q31' Q 32 and Q33 The set (3) of

equations would be in this case

2 2 2 + 2
Q22 " 11 12 21 22

Q 23  ' a1 1a 12 
+ 

a21 a22 (21)

Q 31 ' a12 a.,

Q 32  al21 
+ 

a12 a22

Q33 - al22

which has 22 unknowns and 5 equations.

In general, the set (3) may be formed by the following matrix procedure:

4LIt .4M0--- 0 AM. O'M,4"" Al Q H*%

o 4, ............................ °'-zM-4 O " Q '

04 0 it o

000 - -- o 0.- 0,-

For example, for the 2 x 2 array (19), Eqs. (21) are expressed according

to (22) as:

A4tiz 0 4 -1 a22.' A I
0 4t i 412 0 O 14 1UZ2

it 912 0 0 , (Z3J
o 0.0 &tt 'X 1z 4 'z

L t A 3
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From Eq. (22) the Jacobian (14) is now easy to evaluate. For example:

-I I ~I

)M

9),.
.C4. 0

M-1i -'"' M-1 (14~)

and so on.

For example, in the expression (23) 0

Y,, I -~ [C 0 o 0 0 + 6 0 a IZZ]~o (0s

and so on. In this way one obtains easily for the Jacobian of (23)-

J-. ~ ~ ~ ~ 7 6L'2 4 -a Z* (5)

4Lz 0 0

The recursive procedure given by Eqs. (22) and (24) and illustrated for a

2 x 2 array in Eqs. (23) and (25), can be straightforwardly programed in a

T
computer. For an M x M object array, the product ,TT contained in Eq.

(17) is an M2 x M2  matrix. This product and the subsequent invers~on

procedure can cause instability of the algorithm due to cound-off errors for

t
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4 larger than a certain value (we have experienced this for 4 > 5 in a

VAX-1I/750). However, Iord's et aL. subroutine LNSTR and other subroutines

of MINPACK in ref. 15 control this and complete convergence is obtained.

In the following section we describe our results with this subroutine to

which we provide the system of non-linear equations and the Jacobian as

described in Eqs. (22) and (24).



12

3. Numerical results

The performance of the L-M algorithm by using the LMSTR subroutine of

ref. 15 is discussed here.

Tables 1 show two objects 5 x 5. Table la shows an object array with

random elements, whereas Table lb shows an object with a certain ordered

structure. The reconstruction of these two objects by solving the system

of non-linear equations (22)-41 equations and 25 unknowns-from the auto-

correlation data without noise, is accurate I00% and perfect convergence is

obtained in about 15 iterations. The time per iteration in a VAX 11/750

was about 2 sec. Apart from the correct solutions, trial and error with

different random starts also provided~about another ten local minimum solutions

completely different from these correct reconstructions. No positivity

constraints were used, since no advantage was found in imposing them. In

fact, the inclusion of positivity conditions introduces a non-linear constraint

such that the convergence process becomes difficult to understand and in

fact, it was observed to increase the number of local solutions.

For these small arrays the stability of the reconstruction versus the

noise Introduced in the autocorrelation data was found to be robust. Table 2

shows the autocorrelation of the object of Table la. Table 3a shows the

reconstruction of the object of Table Ia by adding to the autocorrelation

data of Table 2 a noise uniformly distributed with values between -5 and +5.

Table 3b shows the reconstruction of the same object when the noise is uni-

formly distributed with values between -50 and +50. For a noise with values

between -500 and +500 the reconstruction becomes poorer. Results for other

5 x 5 arrays are similar.

. g
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The number of local minimum solutions increases dramatically with the

size of the array. Since L-S operates following the scheme of Eq. (4), the

minimum of F which is closer t3 the starting guess is going to be encountered.

This is illustrated with the 11 x 11 array of Table 4. For this size it

took about six minutes per iteration and perfect convergence (in the sense

that the successive iterations were exactly equal) was obtained in about

seven iterations; from noiseless data, however, many trials with different

starting guesses always gave local minima of F . [f C7 is the value

of the square root of F , and for the starting guess it was of the order of

6, 510 ,all local minima were found at . 10 and, of course, these

reconstructions were very far from the correct one. The autocorrelation

arrays of these local minima were all similar to the correct one near the

center but very different towards the borders. A Monte Carlo procedure

allowed us to obtain a start as close to the correct solution as 6& = 29,

however the L-M algorithm got stuck in this start showing that it was already

a local solution. In fact, in order to get an idea of how many local minima

were existent also in regions of lower C7and even~the correct solution

for which & =0, a starting guess equal to the correct solution perturbed

by noise uniformly distributed between 0 and 1 was introduced in the L-M

algorithm. After four or five iterations the algorithm got stuck without

having substantially approached the correct solution. This suggests the

existence of a "swarm" of local minima very close to the absolute minimum

of F . In practice, if this region of F is reached, it will be very diffi-

cult to distinguish between these local solutions and also from the ideal

noiseless correct reconstruction; of course the existence of noise in the auto-

correlation data will always lead to these local minima if such low regions

of Gare f ound.
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4. Conclusions

We have tested the performance of an important class of Newton methods--

specifically the Levenberg-Marquardt modification of the Gauss-Newton algo-

righm for non-linear least square optimization--in the problem of phase

retrieval for 2-D array objects.

Since this method leads directly to a minimum of the cost function and

also is numerically stable and quadratically convergent, it provides, on

the other hand, a good test of the complexity in the number of the local

minima solutions. For small arrays the algorithm always worked, since a

small number of local solutions was found. However, the algorithm showed

a dramatic increase of the number of these local minima with the size of

the array, showing the existence of swarms of local minima, both far and close

to the correct global minimum solution.

Therefore, although much consideration has been paid to the ambiguity

of the phase reconstruction problem, i.e. to the number of global minima of

the cost function, and it has been shown that in 2-D there is likely to exist

just one global minimum which constitutes the correct solution, the real

practical problem that one has to overcome to establish an efficient algorithm

to reconstruct an object from its autocorrelation data (or what is equivalent,

to reconstruct the phase from the modulus of its spectrum) is that of developing

a strategy to avoid the huge number of local minima of the cost function.

This number seems to increase as one approximates the global minimum, and the

practical uniqueness problem in 2-D is going to be the distinction between

these and the correct solution. This distinction is going to be hard to make

in the presence of noise in the data. A decomposition of the problem in

small arrays would be obviously desirable, however we have been unable to

C
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find a de-coupling of the unknowns in the set of non-linear equations that

would make such decomposition possible.

Finally, it should be mentioned that by the time this work is finished

a very interesting paper has appeared presenting a successful reconstruction

of a 32x32 object array from the zero location of the analytic continuation

of I-D strips of the object spectrum in the absence of noise. Its efficiency

for real noisy data is under current investigation by those authors. It

is worthwhile to remark, however, that the performance of the optimization

method used in this paper should be investigated for 1-D strips of the

object which would involve only M unknowns at each time. The number of

local minima of the corresponding cost function will be much lower than

in the case treated here. However a procedure similar to that of Ref.16

that eliminates the possible'ambiguities by crossing strips in object space

has yet to be found.

i 1 II
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TMIS

1 3 7 is 9

7 1 35 12 2

20 10 1 9 6

is 31 7 15 20

6 40 1 20 25

Table Is: An object with random values.. The reconstruction from

noiseless data is excactly coincident with this object.

so 50 50 50 50

so 0 0 0 50

50 0 so 0 50

so 0 0 0 50

so 0 50 0 s0

Table ib: An object with an orderer structure. The reconstruction

from noiseless data coincides with this object.

J,) Al
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25 95 236 633 718 496 771 468 54195 240 1094 1798 1017 1990 1439 755 174646 802 1079 2228 1746 1675 1717 1022 252894 1722 1434 2835 3881 2411 2205 1633 331653 2381 2129 3051 7126 3051 2129 2381 653331 1633 2205 2411 3801 2835 1434 1722 894252 1022 .1717 1675 1746 2220 1079 802 646174 755 1439 1990 1017 1798 1094 240 19554 468 771 496 71 633 236 95 25

!3Ale : AutocOr".latiOn Of the objecc of Table Ia.
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1.009 3.010 7.003 18.003 9.019

7.022 1.004 35.005 12.004 1.996

19.997 9.999 1.002 8.993 6.003

18.019 31.010 6.999 15.000 20.005

5.996 39.984 0.945 19.978 24.998

Table 3a: Reconstruction, of the object of Table la from the auto-

correlation data plus a noise with values in the interval

(-5, +45).

1.085 3.101 7.032 18.0 33 9.198

7.227 1.042 35.048 12.038 1.964

19.968 9.996 1.021 8.925 6.031

18.197 31.102 6.987 15.012 20.052

5.966 39.832 0.955 19.776 24.983

Table 3b: Rleconstruction of the object of Table Is from the auto-

correlation data plus a noise with values in the interval

(-50, +50).



o .12 6 7 1 1 o 1
02

35 44 5 12 17 27 2 30 78 14 1
14 85 26 4 9 19 42 368 0 13
6 14 13 23 4S 23 12 30 3 89, 67
o -26 12 14 so 12 33 16 23 2 23

49 2 11 33 i6s 14 12 57 76 32
13 1 10 2 1 0 16 1 67 93 23
o 3 5 45 36 so 34 7 2 9

23 9 32 0 44 37 9 162 4

Is3 23 43 St 6 17, 31 9$ 33 0 5
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